It refers to the congruence of two sides and a non-included angle of one triangle with that of another. SSA does not imply congruence of the triangles.
SSS, SAS, ASA, AAS, RHS. SSA can prove congruence if the angle in question is obtuse (if it's 90 degrees, then it's exactly equivalent to RHS).
It does not necessarily prove congruence but it does prove similarity. You can have a smaller or bigger triangle that has the same interior angles.
A triangle having 3 congruent sides is an equilateral triangle
right triangle
It refers to the congruence of two sides and a non-included angle of one triangle with that of another. SSA does not imply congruence of the triangles.
The only Two Triangle congruence shortcuts that do not prove congruence are: 1.AAA( Three pairs of angles in a triangle) & 2.ASS or SSA(If the angle is not in between the two sides like ASA.
The ASS postulate would be that:if an angle and two sides of one triangle are congruent to the corresponding angle and two sides of a second triangle, then the two triangles are congruent.The SSA postulate would be similar.Neither is true.
false
SSS, SAS, ASA, AAS, RHS. SSA can prove congruence if the angle in question is obtuse (if it's 90 degrees, then it's exactly equivalent to RHS).
The two triangle congruence theorems are the AAS(Angle-Angle-Side) and HL(Hypotenuse-Leg) congruence theorems. The AAS congruence theorem states that if two angles and a nonincluded side in one triangle are congruent to two angles and a nonincluded side in another triangle, the two triangles are congruent. In the HL congruence theorem, if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.
It does not necessarily prove congruence but it does prove similarity. You can have a smaller or bigger triangle that has the same interior angles.
the congruence theorems or postulates are: SAS AAS SSS ASA
A triangle having 3 congruent sides is an equilateral triangle
I am guessing you are interested in triangles. Here are two false triangle congruence theorem conjectures.1, If the angles of one triangle are equal respectively to the angles of another triangle, the triangles are congruent. ( abbreviated AAA).2. If two sides and one angle of a triangle are equal respectively the two sides and one angle of another triangle, the triangles are congruent. (abbreviated SSA)Comment: Draw triangles with pairs of equal sides but in which the included angle between the equal sides is acute in one case and obtuse in the others.
There is nothing specific folloing right triangle congruence theorem. It depends on the order in whih the syllabus is taught.
Since ASA is a congruence postulate and congruence implies similarity, then the answer is : yes.