Distance and time do not, in general, affect the speed. Speed, however, can affect distance or time. Distance is directly proportional to speed, time is inversely proportional.
Inversely proportional means that one variable goes up while the other goes down. Directly proportional means that both variables increase or decrease at the same time. ex: The volume of a gas at constant pressure is inversely proportional to gas pressure, thus this means that as pressure increases, the volume of the gas will decrease. ex: The volume of a fixed amount of gas is directly proportional to absolute pressure, thus this means that when you heat a gas the volume also increases.
Time is inversely proportional to speed.
Inertia and acceleration both relate to Newton's laws. Acceleration is mentioned in his second law. This law states that acceleration is directly proportional to force and inversely proportional to mass. Inertia on the other hand is the subject of Newton's first law. It states that an object at rest will remain at rest until acted upon by an unbalanced force. In the same manner, and object in motion will remain in motion until acted upon by an unbalanced force. A definition of acceleration: The increase of velocity over a certain time span, usually written as meters/second^2. A definition of inertia: The desire of an object to remain at a constant velocity, or the resistance to acceleration.
Two quantities are inversely proportional when one is multiplied or divided by any number, the other is divided or multiplied by the same number. The relation is also commonly denoted as: y ∝ x−1 The graph of two variables that are inversely proportional is a hyperbola. Speed and time are inversely proportional because as the speed increases, the time it takes to reach the destination decreases.
Distance is directly proportional to time when speed is constant, meaning that the farther you travel, the longer it takes. Conversely, distance is inversely proportional to time when speed varies, such that if you increase speed, you decrease the time it takes to travel a certain distance.
Time is inversely proportional to force because the less time it takes to apply a force, the greater the force exerted. This relationship is described by the formula Force = mass * acceleration, where if the acceleration (change in velocity over time) is greater, a greater force is exerted in a shorter period of time.
The Circumference of a circle is directly proportional to the diameter. The constant of proportion is 'pi = 3.141592....'. Another one is force is directly proportional to mass. The constyant of proportion is acceleration.
The net force on an object is equal to the mass of the object multiplied by its acceleration.The second law of motion states that:FORCE=MASS*ACCELERATIONA body of mass m subject to a net force F undergoes an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force and inversely proportional to the mass, i.e., F = ma. Alternatively, the total force applied on a body is equal to the time derivative of linear momentum of the body.
uniform acceleration
Distance and time do not, in general, affect the speed. Speed, however, can affect distance or time. Distance is directly proportional to speed, time is inversely proportional.
Inversely proportional means that one variable goes up while the other goes down. Directly proportional means that both variables increase or decrease at the same time. ex: The volume of a gas at constant pressure is inversely proportional to gas pressure, thus this means that as pressure increases, the volume of the gas will decrease. ex: The volume of a fixed amount of gas is directly proportional to absolute pressure, thus this means that when you heat a gas the volume also increases.
P(watt)=energy/time. Where power in measure in watt directly proportional to energy(work) and inversely proportional to time in seconds. 1W = .001kW
If both the mass and length of the pendulum are increased, the period of the pendulum (time taken to complete one full swing) will increase. This is because the period of a pendulum is directly proportional to the square root of the length and inversely proportional to the square root of the acceleration due to gravity times the mass.
Factors that can alter the periodic time for a pendulum include the length of the pendulum arm, the acceleration due to gravity, the angle at which the pendulum is released, and air resistance. Furthermore, the mass of the pendulum bob and any external force applied can also affect the periodic time.
The net force on an object is equal to the mass of the object multiplied by its acceleration.The second law of motion states that:FORCE=MASS*ACCELERATIONA body of mass m subject to a net force F undergoes an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force and inversely proportional to the mass, i.e., F = ma. Alternatively, the total force applied on a body is equal to the time derivative of linear momentum of the body.
Acceleration is dependent on both the force acting on an object and the mass of the object. The relationship between force, mass, and acceleration is described by Newton's second law of motion, which states that acceleration is directly proportional to the net force acting on an object and inversely proportional to its mass. Mathematically, the relationship can be represented as a = F/m, where a is acceleration, F is force, and m is mass.