answersLogoWhite

0

Doubling a cube, also known as the problem of the Delian cube, is not possible using only a straightedge and compass. This task involves constructing a cube with a volume twice that of a given cube, which requires finding the length of the edge of the new cube to be the cube root of 2. However, this length cannot be constructed using those tools, as it is not a constructible number. This was proven in the 19th century through the field of algebraic geometry.

User Avatar

AnswerBot

2mo ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What Greek constructions were never accomplished with only a straightedge and a compass?

Doubling a cube and trisecting any angle


Possible to Triple a square with only a compass and a straightedge?

No, it is not possible to triple the area of a square using only a compass and straightedge. This problem, known as the "doubling the cube" or "cubic duplication," was proven to be impossible in the 19th century through the study of constructible numbers. The process would require constructing a length that is not possible to achieve with the given tools.


Is doubling the cube impossible only using a compass and straightedge?

Yes, doubling the cube, or constructing a cube with a volume twice that of a given cube using only a compass and straightedge, is impossible. This problem, also known as the Delian problem, was proven to be unsolvable in the 19th century through the lens of algebra and geometry. Specifically, it requires constructing the length ( \sqrt[3]{2} ), which cannot be achieved with just these tools.


Constructing a cube with double the volume of another cube using only a straightedge and compass was proven possible by advanced algebra.?

No, it is not. In 1837, the French mathematician, Pierre Laurent Wantzel, proved that it was impossible to do so using only compass and straightedge.


Is it possible to construct a cube of twice the volume of a giving cube only using a straightedge and compass?

No, it is not and in 1837 Pierre Wantzel proved this to be the case.

Related Questions

Which of these constructions is impossible using only a compass and straightedge-?

Constructions that are impossible using only a compass and straightedge include Trisecting an angle Squaring a circle Doubling a cube


Which constructions is impossible using only a compass and straightedge?

doubling the cube


Is it possible to construct a cube of twice the volume of given cube using only a straightedge and compass?

No, it is not possible to construct a cube of twice teh volume of a given cube using only a straightedge and a compass.


Is it possible to construct a cube of twice the volume of the given cube using only a straightedge and compass?

No, it is not possible to construct a cube of twice teh volume of a given cube using only a straightedge and a compass.


What Greek constructions were never accomplished with only a straightedge and a compass?

Doubling a cube and trisecting any angle


What constructions were never accomplished by the Greeks with only a straightedge and a compass?

doubling a cube and trisecting any angle


What constuctions were never accomplished by the Greeks with only a straightedge and a compass?

A. Trisecting any angle B. Doubling a cube


Possible to Triple a square with only a compass and a straightedge?

No, it is not possible to triple the area of a square using only a compass and straightedge. This problem, known as the "doubling the cube" or "cubic duplication," was proven to be impossible in the 19th century through the study of constructible numbers. The process would require constructing a length that is not possible to achieve with the given tools.


Is doubling the cube impossible only using a compass and straightedge?

Yes, doubling the cube, or constructing a cube with a volume twice that of a given cube using only a compass and straightedge, is impossible. This problem, also known as the Delian problem, was proven to be unsolvable in the 19th century through the lens of algebra and geometry. Specifically, it requires constructing the length ( \sqrt[3]{2} ), which cannot be achieved with just these tools.


Constructing a cube with double the volume of another cube using only a straightedge and compass was proven possible by advanced algebra.?

No, it is not. In 1837, the French mathematician, Pierre Laurent Wantzel, proved that it was impossible to do so using only compass and straightedge.


Is it possible to construct a cube of twice the volume of a giving cube only using a straightedge and compass?

No, it is not and in 1837 Pierre Wantzel proved this to be the case.


Is it possible to construct a cube of twice the volume of a given cube using only a straightedge and compass?

No, it is not possible to construct a cube of twice teh volume of a given cube using only a straightedge and a compass.