No. Fractions do not include Irrational Numbers. And although there are an infinite number of both rationals and irrationals, there are far more irrational numbers than rationals.
Chat with our AI personalities
No, the irrationals are more dense.
You have it backwards. Integers are a subset of real numbers.
The real numbers, themselves. Every set is a subset of itself.
Starting at the top, we have the real numbers. The rational numbers is a subset of the reals. So are the irrational numbers. Now some rationals are integers so that is a subset of the rationals. Then a subset of the integers is the whole numbers. The natural numbers is a subset of those.
The natural numbers (ℕ) are a subset of the integers (ℤ) which are a subset of the rational numbers (ℚ) which are a subset of the real numbers (ℝ): ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ → ℕ ⊂ ℝ and ℤ ⊂ ℝ as well as ℚ ⊂ ℝ