Draw the graph of the equation. the solution is/are the points where the line cuts the x(horisontal) axis .
No because quadratic equations only have 2 X-Intercepts
When you graph the quadratic equation, you have three possibilities... 1. The graph touches x-axis once. Then that quadratic equation only has one solution and you find it by finding the x-intercept. 2. The graph touches x-axis twice. Then that quadratic equation has two solutions and you also find it by finding the x-intercept 3. The graph doesn't touch the x-axis at all. Then that quadratic equation has no solutions. If you really want to find the solutions, you'll have to go to imaginary solutions, where the solutions include negative square roots.
-9
2t2+8t+5 = 0 The expression in this quadratic equation is not so simple to factorise because 5 is a prime number which has only two factors (itself and one) but we can get a near enough solution by using the quadratic equation formula. Using the quadratic equation formula gives the solution as: t = - 0.7752551286 or t = - 3.224744871
Draw the graph of the equation. the solution is/are the points where the line cuts the x(horisontal) axis .
No because quadratic equations only have 2 X-Intercepts
When you graph the quadratic equation, you have three possibilities... 1. The graph touches x-axis once. Then that quadratic equation only has one solution and you find it by finding the x-intercept. 2. The graph touches x-axis twice. Then that quadratic equation has two solutions and you also find it by finding the x-intercept 3. The graph doesn't touch the x-axis at all. Then that quadratic equation has no solutions. If you really want to find the solutions, you'll have to go to imaginary solutions, where the solutions include negative square roots.
-9
2t2+8t+5 = 0 The expression in this quadratic equation is not so simple to factorise because 5 is a prime number which has only two factors (itself and one) but we can get a near enough solution by using the quadratic equation formula. Using the quadratic equation formula gives the solution as: t = - 0.7752551286 or t = - 3.224744871
at first the first person to solve the quadratic equation is from the middle kingdom of Egypt. Greeks were also able to solve the quadratic equation but that was on the unproper way. Greeks were able to solve the quadratic equation by geometric method or equlid's method. equlid's method contains only three quadratic equation. dipohantus have also solved the quadratic equations but he have solved by giving only two roots any they both were only of positive signs.After that arbhatya also gave the two formulas for quadratic equation but the bentaguptahave only accepted only one of them after theat some of the Indian mathematican have also solved the quadratic equation who gave the proper definations and formula and in this way quadratic equation have been formed. Prabesh Regmi Kanjirowa National School
If the solutions are p and q, then the quadratic is (x-p)(x-q) = 0 or x2 - (p+q)x + pq = 0 Hope this is what the question meant!
The quadratic formula can be used to solve an equation only if the highest degree in the equation is 2.
A quadratic equation is univariate: it has only one variable. A quadratic equation cannot have two variables. So, if b and c are known then it is a quadratic equation in a; if a and b are known it is a quadratic in c.Another Answer:-The question given is Pythagoras' theorem formula for a right angle triangle
the maximum number of solutions to a quadratic equation is 2. However, usually there is only 1.
I gotchu homie: It's The equation has x = 4 and x = -4 as its only solutions.
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.