Yes, it is true that if ( p ) is an integer and ( q ) is a nonzero integer, then ( p ) can take any whole number value, including positive, negative, or zero, while ( q ) cannot be zero and must be a whole number either positive or negative. This distinction is important in mathematical contexts where division by zero is undefined.
"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.
A rational number is any number of the form p/q where p and q are integers and q is not zero. If p and q are co=prime, then p/q will be rational but will not be an integer.
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
The expression ( p \land q ) is called the "conjunction" of statements ( p ) and ( q ). It is true only when both ( p ) and ( q ) are true; otherwise, it is false. In logical terms, conjunction represents the logical AND operation.
It in Math, (Geometry) If p implies q is a true conditional statement and not q is true, then not p is true.
if p is an integer and q is a nonzero integer
Any fraction p/q where p is an integer and q is a non-zero integer is rational.
Then p/q is a rational number.
Any fraction p/q where p is an integer and q is a non-zero integer is rational.
"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
A rational number is any number of the form p/q where p and q are integers and q is not zero. If p and q are co=prime, then p/q will be rational but will not be an integer.
8 is an integer, which, by definition, are not irrational. In particular, an irrational number is a number that cannot be written in the form p/q for p and q both integers. However, since 8 clearly is equal to 8k/k for any integer k (and for that matter any nonzero number k), 8 is not irrational
If p is true and q is false, p or q would be true. I had a hard time with this too but truth tables help. When using P V Q aka p or q, all you need is for one of the answers to be true. Since p is true P V Q would also be true:)
The statement "p if and only if q" is true when both p and q are true, or when both p and q are false.
If: q = -12 and p/q = -3 Then: p = 36 because 36/-12 = -3
In the statement "p implies q," the relationship between p and q is that if p is true, then q must also be true.