Yes.
No, the combined probability is the product of the probability of their separate occurrances.
They are "events that have the same probability". Nothing more, nothing less.
The probability of winning two games with the same probability of 0.8 can be calculated by multiplying the probability of winning the first game (0.8) by the probability of winning the second game (0.8). Therefore, the probability is 0.8 * 0.8 = 0.64, or 64%.
No, two events are independent if the outcome of one does not affect the outcome of the other. They may or may not have the same probability. Flipping two coins, or rolling two dice, are independent. Drawing two cards, however, are dependent, because the removal of the first card affects the possible outcomes (probability) of the second card.
equiprobable events.
No, the combined probability is the product of the probability of their separate occurrances.
They are "events that have the same probability". Nothing more, nothing less.
If the probability of an event occurring is p, then 1-p represents the probability of the same event not occurring. The value of p must lie between 0 and 1.
The probability of winning two games with the same probability of 0.8 can be calculated by multiplying the probability of winning the first game (0.8) by the probability of winning the second game (0.8). Therefore, the probability is 0.8 * 0.8 = 0.64, or 64%.
No, two events are independent if the outcome of one does not affect the outcome of the other. They may or may not have the same probability. Flipping two coins, or rolling two dice, are independent. Drawing two cards, however, are dependent, because the removal of the first card affects the possible outcomes (probability) of the second card.
The principle of additivity states that the probability of the union of two mutually exclusive events is equal to the sum of their individual probabilities. This means that when events are mutually exclusive (cannot both occur at the same time), their probabilities can be added together to find the probability of either event occurring.
equiprobable events.
Basic Rules of Probability:1) The probability of an event (E) is a number (fraction or decimal) between and including 0 and 1. (0≤P(E)≤1)2) If an event (E) cannot occur its probability is 0.3) If an event (E) is certain to occur, then the probability if E is 1. This means that there is a 100% chance that something will occur.4) The sum of probabilities of all the outcomes in the sample space is 1.Addition Rules/Formulas:When two events (A and B) are mutually exclusive, meaning that they can't occur at the same time or they have no outcomes in common, the probability that A or B will occur is:P(A or B)= P(A)+P(B)If A and B are not mutually exclusive, then:P(A or B)= P(A)+P(B)-P(A and B)Multiplication Rules/Formulas:When two events (A and B) are independent events, meaning the fact that A occurs does not affect the probability of B occurring (for example flipping a coin, rolling a die, or picking a card), the probability of both occurring is:P(A and B)= P(A)P(B)Conditional Probability-When two events are dependent (not independent), the probability of both occurring is:P(A or B)= P(A)P(B|A)Note: P(B|A) does not mean B divided by A but the probability of B after A.
They are both measures of the probability of an event occurring.
Equally likely events.
Equal
No. There are 24 hours in a day, not 12!