Equal
The probability is 0. Consider the event of tossing a coin . The possible events are occurrence of head and tail. they are mutually exclusive events. Hence the probability of getting both the head and tail in a single trial is 0.
No. There are 24 hours in a day, not 12!
Basic Rules of Probability:1) The probability of an event (E) is a number (fraction or decimal) between and including 0 and 1. (0≤P(E)≤1)2) If an event (E) cannot occur its probability is 0.3) If an event (E) is certain to occur, then the probability if E is 1. This means that there is a 100% chance that something will occur.4) The sum of probabilities of all the outcomes in the sample space is 1.Addition Rules/Formulas:When two events (A and B) are mutually exclusive, meaning that they can't occur at the same time or they have no outcomes in common, the probability that A or B will occur is:P(A or B)= P(A)+P(B)If A and B are not mutually exclusive, then:P(A or B)= P(A)+P(B)-P(A and B)Multiplication Rules/Formulas:When two events (A and B) are independent events, meaning the fact that A occurs does not affect the probability of B occurring (for example flipping a coin, rolling a die, or picking a card), the probability of both occurring is:P(A and B)= P(A)P(B)Conditional Probability-When two events are dependent (not independent), the probability of both occurring is:P(A or B)= P(A)P(B|A)Note: P(B|A) does not mean B divided by A but the probability of B after A.
If two events are disjoint, they cannot occur at the same time. For example, if you flip a coin, you cannot get heads AND tails. Since A and B are disjoint, P(A and B) = 0 If A and B were independent, then P(A and B) = 0.4*0.5=0.2. For example, the chances you throw a dice and it lands on 1 AND the chances you flip a coin and it land on heads. These events are independent...the outcome of one event does not affect the outcome of the other.
equiprobable events.
Two events that cannot occur at the same time are called mutually exclusive. If two events are mutually exclusive what is the probability that both occur.
Equal
Nothing more significant than equally likely events.
Two events that cannot occur at the same time are called mutually exclusive.
In probability theory, disjoint events are two (or more) events where more than one cannot occur in the same trial. It is possible that none of them occur in a particular trial.
They are "events that have the same probability". Nothing more, nothing less.
The probability is 0. Consider the event of tossing a coin . The possible events are occurrence of head and tail. they are mutually exclusive events. Hence the probability of getting both the head and tail in a single trial is 0.
That's the probability that both events will happen, possibly even at the same time. I think it's called the 'joint' probability.
Yes, it is possible for two dependent events to have the same probability of occurring. The probability of an event is dependent on the outcomes of other events, and it is influenced by the relationship between these events. So, it is conceivable for two dependent events to have equal probabilities.
Two mutually exclusive events, means these two event can not occur at the same time. In probability theory, this is stated as: Given events, A and B, then Pr(A and B) = 0. See related link...
No. There are 24 hours in a day, not 12!