answersLogoWhite

0


Best Answer

The hamiltonian operator is the observable corresponding to the total energy of the system. As with all observables it is given by a hermitian or self adjoint operator. This is true whether the hamiltonian is limited to momentum or contains potential.

User Avatar

Wiki User

17y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is momentum hamiltonian operator is hermitian operator?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Why Hamilton's equations are called canonical equations?

The word canonical means "by a general law, rule, principle or criterion". When the Hamiltonian operator is applied to the (average momentum) wave function it gives quantized values. In this sense the Hamilton equations gives the Schrodinger equation discreet values by a general law.


What are Hamiltonian equations?

Hamiltonian equations are a representation of Hamiltonian mechanics. Please see the link.


What is Hamiltonian function?

The total energy of the system simply described in classical mechanics called as Hamiltonian.


Why is energy expressed as the second-order partial differential of a wave function in quantum mechanics?

You are referring to the Schrodinger Equation. This is because it comes from the classical view that the total energy is equal to the hamiltonian of a system:Kinetic Energy + Potential Energy = Total energy.Classically the kinetic energy is (1/2)mv2 = p2/(2m) ; where m is mass, v is velocity, p is momentum (p=mv).Now the momentum operator in QM is p=iħ∇ ;where ∇ is the gradient operator.This therefore yields the QM hamiltonian [-ħ2∇2/(2m) + V(x,y,z)]Ψ = EΨNow a more fun question to ask would be "Why is the Hamiltonian a function of the second-order partial differential with respect to position but the time dependent is only a function of a first-order differential with respect to time?"meaningHΨ = -iħ(dΨ/dt) or[-ħ2∇2/(2m) + V(x,y,z)]Ψ = -iħ(dΨ/dt)hint: Think Maxwell's Equations!


What is harmitian matrix?

Hermitian matrix (please note spelling): a square matrix with complex elements that is equal to its conjugate transpose.

Related questions

What is the meaning of Hc in an Hamiltonian?

In the context of a Hamiltonian, Hc typically refers to the complex conjugate of the Hamiltonian operator. Taking the complex conjugate of the Hamiltonian operator is often done when dealing with quantum mechanical systems to ensure that physical observables are real-valued.


What is a Hermitian operator?

A Hermitian operator is a linear operator that is equal to its own adjoint. In other words, the adjoint of a Hermitian operator is the same as the operator itself. Hermitian operators play a key role in quantum mechanics as they correspond to observable physical quantities.


Prove that coordinate is cyclic in Lagrangian then it is also cyclic in Hamiltonian?

If a coordinate is cyclic in the Lagrangian, then the corresponding momentum is conserved. In the Hamiltonian formalism, the momentum associated with a cyclic coordinate becomes the generalized coordinate's conjugate momentum, which also remains constant. Therefore, if a coordinate is cyclic in the Lagrangian, it will also be cyclic in the Hamiltonian.


How do i Derive Position operator in momentum space?

To derive the position operator in momentum space, you can start with the definition of the position operator in position space, which is the operator $\hat{x} = x$. You then perform a Fourier transform on this operator to switch from position space to momentum space. This Fourier transform will yield the expression of the position operator in momentum space $\hat{x}_{p}$.


Expectation value of hermitian operator is real?

Yes. The derivation is a bit hard to do on here, but it can be found in Physical Chemistry: A Molecular Approach by McQuarrie and Simon.


Why Hamilton's equations are called canonical equations?

The word canonical means "by a general law, rule, principle or criterion". When the Hamiltonian operator is applied to the (average momentum) wave function it gives quantized values. In this sense the Hamilton equations gives the Schrodinger equation discreet values by a general law.


What is the definition of a Hermitian matrix?

Hermitian matrix defined:If a square matrix, A, is equal to its conjugate transpose, A†, then A is a Hermitian matrix.Notes:1. The main diagonal elements of a Hermitian matrix must be real.2. The cross elements of a Hermitian matrix are complex numbers having equal real part values, and equal-in-magnitude-but-opposite-in-sign imaginary parts.


Can you make momentum operator non self adjoint?

No, the momentum operator in quantum mechanics must be self-adjoint in order to ensure that it generates unitary time evolution and that the associated probability distribution is conserved. Making the momentum operator not self-adjoint would lead to inconsistencies with the fundamental principles of quantum mechanics.


What are Hamiltonian equations?

Hamiltonian equations are a representation of Hamiltonian mechanics. Please see the link.


What is the dimension of hermitian matrix?

77


What is the definition of a skew-Hermitian matrix?

Skew-Hermitian matrix defined:If the conjugate transpose, A†, of a square matrix, A, is equal to its negative, -A, then A is a skew-Hermitian matrix.Notes:1. The main diagonal elements of a skew-Hermitian matrix must be purely imaginary, including zero.2. The cross elements of a skew-Hermitian matrix are complex numbers having equal imaginary part values, and equal-in-magnitude-but-opposite-in-sign real parts.


What is the proper adjective for Hamilton?

Hamiltonian is the proper adjective for Hamilton. For instance: The Hamiltonian view on the structure of government was much different from that of Jefferson.