Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
Yes, because a variable cannot be both true and not true.
I guess you mean q → p (as in the logic operator: q implies p).To create this truth table, you run over all truth values for q and p (that is whether each statement is True or False) and calculate the value of the operator. You can use True/False, T/F, 1/0, √/X, etc as long as you are consistent for the symbol used for True and the symbol used for False (the first 3 suggestions given are the usual ones used).For implies:if you have a true statement, then it can only imply a true statement to be truebut a negative statement can imply either a true statement or a false one to be truegiving:. q . . p . q→p--------------. 0 . . 0 . . 1 .. 0 . . 1 . . 1 .. 1 . . 0 . . 0 .. 1 . . 1 . . 1 .
False. In order for the line PQ to lie in plane B, then both P and Q must lie in plane B.
It in Math, (Geometry) If p implies q is a true conditional statement and not q is true, then not p is true.
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
true or false = true
If p is true and q is false, p or q would be true. I had a hard time with this too but truth tables help. When using P V Q aka p or q, all you need is for one of the answers to be true. Since p is true P V Q would also be true:)
The relational operators: ==, !=, =.p == q; // evaluates true if the value of p and q are equal, false otherwise.p != q; // evaluates true of the value of p and q are not equal, false otherwise.p < q; // evaluates true if the value of p is less than q, false otherwise.p q; // evaluates true if the value of p is greater than q, false otherwise.p >= q; // evaluates true of the value of p is greater than or equal to q, false otherwiseNote that all of these expressions can be expressed logically in terms of the less than operator alone:p == q is the same as NOT (p < q) AND NOT (q < p)p != q is the same as (p < q) OR (q < p)p < q is the same as p < q (obviously)p q is the same as (q < p)p >= q is the same as NOT (p < q)
"P and not P" is always false. If P is true, not P is false; if P is false, not P is true. In either case, combining a true and a false with the AND operator gives you false. And if you look at the truth table for the implication (the "therefore" part), when the left part is false, the result is always true.
Yes, because a variable cannot be both true and not true.
Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.
Think of 'not' as being an inverse. Not 1 = 0. Not 0 = 1. Using boolean algebra we can look at your question. 'and' is a test. It wants to know if BOTH P and Q are the same and if they are 1 (true). If they are not the same, or they are both 0, then the result is false or 0. not P and Q is rewritten like so: (P and Q)' = X not P and not Q is rewritten like: P' and Q' = X (the apostrophe is used for not) We will construct a truth table for each and compare the output. If the output is the same, then you have found your equivalency. Otherwise, they are not equivalent. P and Q are the inputs and X is the output. P Q | X P Q | X ------ 0 0 | 1 0 0 | 1 0 1 | 1 0 1 | 0 1 0 | 1 1 0 | 0 1 1 | 0 1 1 | 0 Since the truth tables are not equal, not P and Q is not equivalent to not P and not Q. Perhaps you meant "Is NOT(P AND Q) equivalent to NOT(P) AND NOT(Q)?" NOT(P AND Q) can be thought of intuitively as "Not both P and Q." Which if you think about, you can see that it would be true if something were P but not Q, Q but not P, and neither P nor Q-- so long as they're not both true at the same time. Now, "NOT(P) AND NOT(Q)" is clearly _only_ true when BOTH P and Q are false. So there are cases where NOT(P AND Q) is true but NOT(P) AND NOT(Q) is false (an example would be True(P) and False(Q)). NOT(P AND Q) does have an equivalence however, according to De Morgan's Law. The NOT can be distributed, but in doing so we have to change the "AND" to an "OR". NOT(P AND Q) is equivalent to NOT(P) OR NOT(Q)
I guess you mean q → p (as in the logic operator: q implies p).To create this truth table, you run over all truth values for q and p (that is whether each statement is True or False) and calculate the value of the operator. You can use True/False, T/F, 1/0, √/X, etc as long as you are consistent for the symbol used for True and the symbol used for False (the first 3 suggestions given are the usual ones used).For implies:if you have a true statement, then it can only imply a true statement to be truebut a negative statement can imply either a true statement or a false one to be truegiving:. q . . p . q→p--------------. 0 . . 0 . . 1 .. 0 . . 1 . . 1 .. 1 . . 0 . . 0 .. 1 . . 1 . . 1 .
False. In order for the line PQ to lie in plane B, then both P and Q must lie in plane B.
Comparative operators are used to compare the logical value of one object with another and thus establish the rank (ordering) of those objects. There are six comparative operators in total: p<q : evaluates true when p is less than q p>q : evaluates true when p is greater than q p<=q : evaluates true when p is less than or equal to q p>=q : evaluates true when p is greater than or equal to q p!=q : evaluates true when p is not equal to q p==q : evaluates true when p is equal to q