An ordered pair can represent either a relation or a function, depending on its properties. A relation is simply a set of ordered pairs, while a function is a specific type of relation where each input (first element of the pair) is associated with exactly one output (second element of the pair). If an ordered pair is part of a set where each input corresponds to only one output, it defines a function. Otherwise, it is just a relation.
A relation is defined as a set of ordered pairs. A function is a special kind of relation ...
To determine which pairs of ordered pairs can be removed from the relation -1013222331 to make it a function, we need to identify any duplicate first elements. A relation is a function if each input (first element) is associated with exactly one output (second element). If there are any pairs with the same first element but different second elements, one of those pairs must be removed to ensure the relation meets the definition of a function.
If a relation can be called a function, it means that the relation maps every element to one and only one other element. If you have some ordered pairs and see that, for example, 1 maps to 4 (1,4) and 1 also maps to 7 (1,7) , you don't have a function.
The ordered pairs (-11), (3-7), (4-9), and (8-17) do not represent a function because they are not properly formatted as ordered pairs (they lack a second element). If we assume they were meant to be (x, y) pairs like (-11, y1), (3, -7), (4, -9), and (8, -17), we would need to check if any x-values repeat with different y-values to determine if it’s a function. As given, they are neither a relation nor a function due to the lack of a clear second element for each pair.
Removing the ordered pair would ensure that each input (or "x" value) in the relation corresponds to exactly one output (or "y" value). A function is defined as a relation where no two ordered pairs have the same first component with different second components. Therefore, eliminating the pair that violates this condition would make the relation a valid function.
If a set of ordered pairs is not a relation, the set can still be a function.
A relation is defined as a set of ordered pairs. A function is a special kind of relation ...
A relation is when the domain in the ordered pair (x) is different from the domain in all other ordered pairs. The range (y) can be the same and it still be a function.
In general you cannot. Any set of ordered pairs can be a graph, a table, a diagram or relation. Any set of ordered pairs that is one-to-one or many-to-one can be an equation, function.
A relation is a set of ordered pairs
A set of ordered pairs, can also be tables, graphs, or a mapping diagram
If a relation can be called a function, it means that the relation maps every element to one and only one other element. If you have some ordered pairs and see that, for example, 1 maps to 4 (1,4) and 1 also maps to 7 (1,7) , you don't have a function.
Removing the ordered pair would ensure that each input (or "x" value) in the relation corresponds to exactly one output (or "y" value). A function is defined as a relation where no two ordered pairs have the same first component with different second components. Therefore, eliminating the pair that violates this condition would make the relation a valid function.
set of ordered pairs
A relation is just a set of ordered pairs. They are in no special order. Therefore there is no particular shape assigned to a relation. A function is a special kind of relation. A relation becomes a function when the x value only has one y value.
A set of ordered pairs is a relation. Or Just simply "Coordinates"
The domain is all the first coordinates in a relation. A relation is two ordered pairs.