answersLogoWhite

0

It is irrational.

The proof depends on the proof that sqrt(5) is irrational. However, judging by this question, I suggest that you are not yet ready for that proof.

So, assume that sqrt(5) is irrational. Any multiple of an irrrational number by a non-zero rational isirrational.

For suppose 2*sqrt(5) were rational

that is 2*sqrt(5) = p/q for some integers p and q, where q is nonzero.

then dividing both isdes by 2 gives sqrt(5) = p/(2q) where p and 2q are both integers and 2q in non-zero.

But that implies that sqrt(5) is rational!

That is a contradiction so 2*sqrt(5) cannot be rational.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
More answers

The square root of 5 is an irrational number because it can't be expressed as a fraction

User Avatar

Wiki User

7y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Is the 2 square root of 5 rational or irrational why?
Write your answer...
Submit
Still have questions?
magnify glass
imp