answersLogoWhite

0


Best Answer

Yes, mathematically. But it's really only true if the string has no mass at all.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is the period of a pendulum independent of mass?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the relation between the mass and period of the pendulum?

The period is independent of the mass.


Why does time period of simple pendulum is independent from mass?

The time period of a simple pendulum is independent of mass because the formula for the time period only depends on the length of the pendulum and the acceleration due to gravity. The mass of the pendulum bob does not affect the time it takes for one complete swing because the force due to gravity acts equally on all masses. This makes the mass cancel out in the equation, resulting in a time period that is mass-independent.


Why time period of simple pendulum is independent of mass?

The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.


Why does mass not affect the period of a pendulum?

The period of a pendulum is determined by the length of the pendulum and the acceleration due to gravity, but it is independent of the mass of the pendulum bob. This is because as the mass increases, so does the force of gravity acting on it, resulting in a larger inertia that cancels out the effect of the increased force.


What happens to the period of a pendulum if you increase its mass?

Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.


What happens to time period of a simple pendulum if a heavy body is attached to it instead of bob?

The period of a simple pendulum is independent of the mass of the bob. Keep in mind that the size of the bob does affect the length of the pendulum.


Why does the mass of pendulum not affect its period?

The period of a pendulum is influenced by the length of the pendulum and the acceleration due to gravity. The mass of the pendulum does not affect the period because the force of gravity acts on the entire pendulum mass, causing it to accelerate at the same rate regardless of its mass. This means that the mass cancels out in the equation for the period of a pendulum.


What happen to period of pendulum when mass increase?

The period of a pendulum is not affected by the mass of the pendulum bob. The period depends only on the length of the pendulum and the acceleration due to gravity.


What are the factors on which the time period of simple pendulum depends?

The time period of a simple pendulum depends on the length of the string and the acceleration due to gravity. It is independent of the mass of the bob and the angle of displacement, provided the angle is small.


What happens to the period of a pendulum if you double the mass on the end of the string but keep all other factors the same?

If you double the mass on the end of the string while keeping all other factors the same, the period of the pendulum will remain unchanged. The period of a pendulum is independent of the mass attached to it as long as the length and gravitational acceleration remain constant.


What happens when you double the mass of a pendulum?

Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.


Why is the period of a pendulum independent of its mass?

As we derive the expression for period using dimensional analysis, we get T = 1/2pi ./(l/g) In this no mass is present. Hence the conclusion