Yes, always.
The product will be irrational.
It is an irrational number.
-2π is an irrational number. While -2 is a rational number, π (pi) is known to be irrational, meaning it cannot be expressed as a fraction of two integers. The product of a nonzero rational number and an irrational number is always irrational, so -2π remains irrational.
Suppose a is rational (and non-zero) and x is irrational. Suppose ax is rational;write ax = b where b is rational.Then x = b/a, and x would be rational, contradiction.
The quotient of a nonzero rational number and an irrational number is always an irrational number. This is because dividing a rational number (which can be expressed as a fraction of integers) by an irrational number cannot result in a fraction that can be simplified to a rational form. Therefore, the result remains outside the realm of rational numbers.
Actually the product of a nonzero rational number and another rational number will always be rational.The product of a nonzero rational number and an IRrational number will always be irrational. (You have to include the "nonzero" caveat because zero times an irrational number is zero, which is rational)
It is always irrational.
It is irrational.
The product will be irrational.
It is an irrational number.
Yes.
Yes, always.
The product of an irrational number and a rational number, both nonzero, is always irrational
An irrational number.
Suppose a is rational (and non-zero) and x is irrational. Suppose ax is rational;write ax = b where b is rational.Then x = b/a, and x would be rational, contradiction.
The product of a rational and irrational number can be rational if the rational is 0. Otherwise it is always irrational.
Such a product is always irrational - unless the rational number happens to be zero.