Unless you multiply 0 with some irrational number, it is impossible. Here's why:
Let x,y be rational with x = a/b, z = c/d and y be the irrational number. If we presume xy = z then we have y = z/x. However, this is equal to (c/d)/(a/b) = (bc)/(ad), which is rational. Since y is assumed to be irrational, this cannot occur (unless one of b,c is zero).
The product of a rational and irrational number can be rational if the rational is 0. Otherwise it is always irrational.
The product of 0 and an irrational is 0 (a rational), the product of a non-zero rational and any irrational is always irrational.
The question cannot be answered because it is based on a false premise.The product of a (not an!) rational number and an irrational number need not be irrational. For eample, the product ofthe rational number, 0, and the irrational number, pi, is 0. The product is rational, not irrational!
No.A rational times an irrational is never rational. It is always irrational.
If you multiply a rational and an irrational number, the result will be irrational.
The product of 2 rationals must be rational. The product of a rational and an irrational is irrational (unless the rational is 0) The product of two irrationals can be either rational or irrational.
The product of a rational and irrational number can be rational if the rational is 0. Otherwise it is always irrational.
Such a product is always irrational - unless the rational number happens to be zero.
No. 0 is a rational number and the product of 0 and any irrational number will be 0, a rational. Otherwise, though, the product will always be irrational.
The product of 0 and an irrational is 0 (a rational), the product of a non-zero rational and any irrational is always irrational.
The question cannot be answered because it is based on a false premise.The product of a (not an!) rational number and an irrational number need not be irrational. For eample, the product ofthe rational number, 0, and the irrational number, pi, is 0. The product is rational, not irrational!
Provided that the rational number is not 0, the product is irrational.
It is always irrational.
No.A rational times an irrational is never rational. It is always irrational.
If you multiply a rational and an irrational number, the result will be irrational.
Not if the rational number is zero. In all other cases, the product is irrational.
Actually the product of a nonzero rational number and another rational number will always be rational.The product of a nonzero rational number and an IRrational number will always be irrational. (You have to include the "nonzero" caveat because zero times an irrational number is zero, which is rational)