No, it is not.
Chat with our AI personalities
If the product of two matrices is the identity matrix then one matrix is the inverse or reciprocal of the other matrix. EXAMPLE A =(4 1) A-1 = (0.3 -0.1) then AA-1 = (1 0) .....(2 3)......... (-0.2 0.4)................... (1 1) The dots simply maintain the spacing and serve no other purpose.
The product of a p x q and a r x s matrix is defined only if q = r and, if so, it is a p x s matrix.
The matrix multiplication in c language : c program is used to multiply matrices with two dimensional array. This program multiplies two matrices which will be entered by the user.
If the product of two matrices is an identity matrix then, one matrix is inverse of the other. i.e. AB = I then, A = B-1 and B = A-1Inverse of matrix can be found by using these two results:A = AI and A = IA.By using these results inverse of a matrix can be found by applying same elementary row or column operation on both sides. A on R.H.S. remains as it is.
A singular matrix is a matrix that is not invertible. If a matrix is not invertible, then:• The determinant of the matrix is 0.• Any matrix multiplied by that matrix doesn't give the identity matrix.There are a lot of examples in which a singular matrix is an idempotent matrix. For instance:M =[1 1][0 0]Take the product of two M's to get the same M, the given!M x M = MSo yes, SOME singular matrices are idempotent matrices! How? Let's take a 2 by 2 identity matrix for instance.I =[1 0][0 1]I x I = I obviously.Then, that nonsingular matrix is also idempotent!Hope this helps!