answersLogoWhite

0

the order is m p and the matrices can be multiplied if and only if the first one (matrix A) has the same number of columns as the second one (matrix B) has rows i.e)is Matrix A has n columns, then Matrix B MUST have n rows.

Equal Matrix: Two matrices A=|Aij| and B=|Bij| are said to be equal (A=B) if and only if they have the same order and each elements of one is equal to the corresponding elements of the other. Such as A=|1 2 3|, B=|1 2 3|. Thus two matrices are equal if and only if one is a duplicate of the other.

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

What is idompotent matrix?

An idempotent matrix is a square matrix ( A ) that satisfies the condition ( A^2 = A ). This means that when the matrix is multiplied by itself, it yields the same matrix. Idempotent matrices are significant in various areas of linear algebra and statistics, particularly in projection operations. An example of an idempotent matrix is the zero matrix, as well as any projection matrix onto a subspace.


What is the matrix that if you multiplied by the original matrix you would get the identity matrix?

The matrix that, when multiplied by the original matrix, yields the identity matrix is known as the inverse matrix. For a given square matrix ( A ), its inverse is denoted as ( A^{-1} ). The relationship is expressed as ( A \times A^{-1} = I ), where ( I ) is the identity matrix. Not all matrices have inverses; a matrix must be square and have a non-zero determinant to possess an inverse.


How do you know if two matrices can actually be multiplied?

The number of columns in the first matrix must equal the number of rows in the second.


Can matrices of the same dimension be multiplied?

No. The number of columns of the first matrix needs to be the same as the number of rows of the second.So, matrices can only be multiplied is their dimensions are k*l and l*m. If the matrices are of the same dimension then the number of rows are the same so that k = l, and the number of columns are the same so that l = m. And therefore both matrices are l*l square matrices.


What is the singular form of matrices?

The singular form of matrices is matrix.


22 matrix with 33 matrix multiplication?

It is not possible. The number of columns in the first matrix must be the same as the number of rows in the second. That is, matrices, X (kxl) and Y (mxn) can only be multiplied [in that order] if l = m.


Why order doesn't matter when you find inverse of the matrix specificly?

When finding the inverse of a matrix, order doesn't matter because the operation of taking the inverse is inherently defined for square matrices. Specifically, if ( A ) is an invertible matrix, then its inverse ( A^{-1} ) satisfies the property ( A A^{-1} = I ) and ( A^{-1} A = I ), where ( I ) is the identity matrix. This means that multiplying ( A ) by its inverse will always yield the identity matrix, regardless of the order in which the matrices are multiplied. However, note that the order does matter when multiplying different matrices together; it's only the specific case of a matrix and its inverse that ensures commutativity in this regard.


What is the determinant rank of the determinant of 123456 its a 2 x 3 matrix?

A determinant is defined only for square matrices, so a 2x3 matrix does not have a determinant.Determinants are defined only for square matrices, so a 2x3 matrix does not have a determinant.


Define the condition number of a matrix?

Matrix Condition NumberThe condition number for matrix inversion with respect to a matrix norm k¢k of a square matrix A is defined by∙(A)=kAkkA¡1k;if A is non-singular; and ∙(A)=+1 if A is singular.The condition number is a measure of stability or sensitivity of a matrix (or the linear system it represents) to numerical operations. In other words, we may not be able to trust the results of computations on an ill-conditioned matrix.Matrices with condition numbers near 1 are said to be well-conditioned. Matrices with condition numbers much greater than one (such as around 105 for a 5£5Hilbert matrix) are said to be ill-conditioned.If ∙(A) is the condition number of A , then ∙(A) measures a sort of inverse distance from A to the set of singular matrices, normalized by kAk . Precisely, if A isinvertible, and kB¡Ak


Can a nonsquare matrix be a triangular matrix?

No. Only square matrices can be triangular.


How convert singular matrix in to non singular?

The plural of matrix is matrices.


Is it possible to multiply a 3 X 2 matrix and a 2 X 3 matrix?

The first matrix has 3 rows and 2 columns, the second matrix has 2 rows and 3 columns. Two matrices can only be multiplied together if the number of columns in the first matrix is equal to the number of rows in the second matrix. In the example shown there are 3 rows in the first matrix and 3 columns in the second matrix. And also 2 columns in the first and 2 rows in the second. Multiplication of the two matrices is therefore possible.