1- Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean. 2-Because they are robust, t procedures are justified in this case. 3- We would use z procedures here, since we are interested in the population mean.
The n-1 indicates that the calculation is being expanded from a sample of a population to the entire population. Bessel's correction(the use of n − 1 instead of n in the formula) is where n is the number of observations in a sample: it corrects the bias in the estimation of the population variance, and some (but not all) of the bias in the estimation of the population standard deviation. That is, when estimating the population variance and standard deviation from a sample when the population mean is unknown, the sample variance is a biased estimator of the population variance, and systematically underestimates it.
The same basic formula is used to calculate the sample or population mean. The sample mean is x bar and the population mean is mu. Add all the values in the sample or population and divide by the number of data values.
The sample is not a perfect representation of the population.
The sample mean may differ from the population mean, especially for small samples.
The best estimator of the population mean is the sample mean. It is unbiased and efficient, making it a reliable estimator when looking to estimate the population mean from a sample.
The sample mean is an unbiased estimator of the population mean because the average of all the possible sample means of size n is equal to the population mean.
The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.
It can get a bit confusing! The estimate is the value obtained from a sample. The estimator, as used in statistics, is the method used. There's one more, the estimand, which is the population parameter. If we have an unbiased estimator, then after sampling many times, or with a large sample, we should have an estimate which is close to the estimand. I will give you an example. I have a sample of 5 numbers and I take the average. The estimator is taking the average of the sample. It is the estimator of the mean of the population. The average = 4 (for example), this is my estmate.
I believe you want to say, "as the sample size increases" I find this definition on Wikipedia that might help: In statistics, a consistent sequence of estimators is one which converges in probability to the true value of the parameter. Often, the sequence of estimators is indexed by sample size, and so the consistency is as sample size (n) tends to infinity. Often, the term consistent estimator is used, which refers to the whole sequence of estimators, resp. to a formula that is used to obtain a term of the sequence. So, I don't know what you mean by "the value of the parameter estimated F", as I think you mean the "true value of the parameter." A good term for what the estimator is attempting to estimate is the "estimand." You can think of this as a destination, and your estimator is your car. Now, if you all roads lead eventually to your destination, then you have a consistent estimator. But if it is possible that taking one route will make it impossible to get to your destination, no matter how long you drive, then you have an inconsistent estimator. See related links.
1- Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean. 2-Because they are robust, t procedures are justified in this case. 3- We would use z procedures here, since we are interested in the population mean.
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)
The main point here is that the Sample Mean can be used to estimate the Population Mean. What I mean by that is that on average, the Sample Mean is a good estimator of the Population Mean. There are two reasons for this, the first is that the Bias of the estimator, in this case the Sample Mean, is zero. A Bias other than zero overestimates or underestimates the Population Mean depending on its value. Bias = Expected value of estimator - mean. This can be expressed as EX(pheta) - mu (pheta) As the Sample Mean has an expected value (what value it expects to take on average) of itself then the greek letter mu which stands for the Sample Mean will provide a Bias of 0. Bias = mu - mu = 0 Secondly as the Variance of the the Sample Mean is mu/(n-1) this leads us to believe that the Variance will fall as we increase the sample size. Variance is a measure of the dispersion of values collected from the centre of the data. Where the centre of the data is a fixed value equal to the median. Put Bias and Variance together and you get the Mean Squared Error which is the error associated with using an estimator of the Population Mean. The formula for Mean Squared Error = Bias^2 + Variance With our estimator we can see that as the Bias = zero, it has no relevance to the error and as the variance falls as the sample size increases then we can conclude that the error associated with using the sample mean will fall as the sample size increases. Conclusions: The Random Sample of public opinon will on average lead to a true representation of the Population Mean and therefore the random samle you have will represnt the public opinion to a fairly high degree of accuracy. Finally, this degree of accuracy will rise incredibly quickly as the sample size rises thus leading to a very accurate representation (on average)
It means you can take a measure of the variance of the sample and expect that result to be consistent for the entire population, and the sample is a valid representation for/of the population and does not influence that measure of the population.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.