answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

Is mean an unbiased estimator of a population?

Yes, the sample mean is an unbiased estimator of the population mean. This means that, on average, the sample mean will equal the true population mean when taken from a large number of random samples. In other words, as the sample size increases, the expected value of the sample mean converges to the population mean, making it a reliable estimator in statistical analysis.


Why the sample variance is an unbiased estimator of the population variance?

The sample variance is considered an unbiased estimator of the population variance because it corrects for the bias introduced by estimating the population variance from a sample. When calculating the sample variance, we use ( n-1 ) (where ( n ) is the sample size) instead of ( n ) in the denominator, which compensates for the degree of freedom lost when estimating the population mean from the sample. This adjustment ensures that the expected value of the sample variance equals the true population variance, making it an unbiased estimator.


Which estimator will consistently have an approximately normal distribution?

The sample mean is an estimator that will consistently have an approximately normal distribution, particularly due to the Central Limit Theorem. As the sample size increases, the distribution of the sample mean approaches a normal distribution regardless of the original population's distribution, provided the samples are independent and identically distributed. This characteristic makes the sample mean a robust estimator for large sample sizes.


Which of the following best describes the condition necessary to justify using a pooled estimator of the population variance?

1- Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean. 2-Because they are robust, t procedures are justified in this case. 3- We would use z procedures here, since we are interested in the population mean.


What does n-1 indicate in a calculation for variance?

The n-1 indicates that the calculation is being expanded from a sample of a population to the entire population. Bessel's correction(the use of n − 1 instead of n in the formula) is where n is the number of observations in a sample: it corrects the bias in the estimation of the population variance, and some (but not all) of the bias in the estimation of the population standard deviation. That is, when estimating the population variance and standard deviation from a sample when the population mean is unknown, the sample variance is a biased estimator of the population variance, and systematically underestimates it.

Related Questions

What is the best estimator of population mean?

The best point estimator of the population mean would be the sample mean.


Why is the sample mean an unbiased estimator of the population mean?

The sample mean is an unbiased estimator of the population mean because the average of all the possible sample means of size n is equal to the population mean.


Is mean an unbiased estimator of a population?

Yes, the sample mean is an unbiased estimator of the population mean. This means that, on average, the sample mean will equal the true population mean when taken from a large number of random samples. In other words, as the sample size increases, the expected value of the sample mean converges to the population mean, making it a reliable estimator in statistical analysis.


What biased estimator will have a reduced bias based on an increased sample size?

The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.


What is the variable that provides the basis for estimator?

The variable that provides the basis for an estimator is typically the sample data collected from a population. This data is used to calculate the estimator, which is a statistical function that aims to estimate a population parameter, such as the mean or variance. The quality and relevance of the sample data directly influence the accuracy and reliability of the estimator. In essence, the sample serves as the foundation upon which estimations about the broader population are built.


Differentiate estimate and estimator?

It can get a bit confusing! The estimate is the value obtained from a sample. The estimator, as used in statistics, is the method used. There's one more, the estimand, which is the population parameter. If we have an unbiased estimator, then after sampling many times, or with a large sample, we should have an estimate which is close to the estimand. I will give you an example. I have a sample of 5 numbers and I take the average. The estimator is taking the average of the sample. It is the estimator of the mean of the population. The average = 4 (for example), this is my estmate.


Why the sample variance is an unbiased estimator of the population variance?

The sample variance is considered an unbiased estimator of the population variance because it corrects for the bias introduced by estimating the population variance from a sample. When calculating the sample variance, we use ( n-1 ) (where ( n ) is the sample size) instead of ( n ) in the denominator, which compensates for the degree of freedom lost when estimating the population mean from the sample. This adjustment ensures that the expected value of the sample variance equals the true population variance, making it an unbiased estimator.


Which estimator will consistently have an approximately normal distribution?

The sample mean is an estimator that will consistently have an approximately normal distribution, particularly due to the Central Limit Theorem. As the sample size increases, the distribution of the sample mean approaches a normal distribution regardless of the original population's distribution, provided the samples are independent and identically distributed. This characteristic makes the sample mean a robust estimator for large sample sizes.


Which of the following best describes the condition necessary to justify using a pooled estimator of the population variance?

1- Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean. 2-Because they are robust, t procedures are justified in this case. 3- We would use z procedures here, since we are interested in the population mean.


An estimator is consistent if as the sample size decreases the value of the estimator approaches the value of the parameter estimated F?

I believe you want to say, "as the sample size increases" I find this definition on Wikipedia that might help: In statistics, a consistent sequence of estimators is one which converges in probability to the true value of the parameter. Often, the sequence of estimators is indexed by sample size, and so the consistency is as sample size (n) tends to infinity. Often, the term consistent estimator is used, which refers to the whole sequence of estimators, resp. to a formula that is used to obtain a term of the sequence. So, I don't know what you mean by "the value of the parameter estimated F", as I think you mean the "true value of the parameter." A good term for what the estimator is attempting to estimate is the "estimand." You can think of this as a destination, and your estimator is your car. Now, if you all roads lead eventually to your destination, then you have a consistent estimator. But if it is possible that taking one route will make it impossible to get to your destination, no matter how long you drive, then you have an inconsistent estimator. See related links.


What is the difference a parameter and a statistic?

A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)


What is the difference between a parameter and a statistic?

A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)