No, the y-intercept is not the same as the absolute value parent function. The absolute value parent function, represented as ( f(x) = |x| ), has a vertex at the origin (0, 0), which serves as its y-intercept. While the absolute value function does have a specific y-intercept, the term "y-intercept" generally refers to the point where any function crosses the y-axis, which can vary depending on the function in question.
apex what is the range of the absolute... answer is nonnegative real num...
the range is all real numbers
The domain of the absolute value parent function, ( f(x) = |x| ), is all real numbers, expressed as ( (-\infty, \infty) ). The range is all non-negative real numbers, represented as ( [0, \infty) ), since the absolute value cannot be negative.
To shift the absolute value parent function ( F(x) = |x| ) right by 9 units, you replace ( x ) with ( x - 9 ). Therefore, the equation of the new function becomes ( F(x) = |x - 9| ). This transformation moves the vertex of the absolute value function from the origin to the point (9, 0).
The y-intercept is the value of the function when 'x' is zero. That is, it's the point at which the graph of the function intercepts (crosses) the y-axis. The x-intercept is the value of 'x' that makes the value of the function zero. That is, it's the point at which 'y' is zero, and the graph of the function intercepts the x-axis.
apex what is the range of the absolute... answer is nonnegative real num...
the range is all real numbers
The domain of the absolute value parent function, ( f(x) = |x| ), is all real numbers, expressed as ( (-\infty, \infty) ). The range is all non-negative real numbers, represented as ( [0, \infty) ), since the absolute value cannot be negative.
It’s vertex is not at the origin
apex what is the range of the absolute... answer is nonnegative real num...
Its vertex is not at the origin
The absolute value function returns the absolute value of a number.
An absolute-value function
The y-intercept is the value of the function when 'x' is zero. That is, it's the point at which the graph of the function intercepts (crosses) the y-axis. The x-intercept is the value of 'x' that makes the value of the function zero. That is, it's the point at which 'y' is zero, and the graph of the function intercepts the x-axis.
The y-intercept is the value of the function (if it exists) when x = 0.
To horizontally shift the absolute value parent function ( F(x) = |x| ) three units to the left, you replace ( x ) with ( x + 3 ). This results in the new function ( F(x) = |x + 3| ). Thus, the equation of the shifted function is ( F(x) = |x + 3| ).
No it is not