the range is all real numbers
apex what is the range of the absolute... answer is nonnegative real num...
No, the y-intercept is not the same as the absolute value parent function. The absolute value parent function, represented as ( f(x) = |x| ), has a vertex at the origin (0, 0), which serves as its y-intercept. While the absolute value function does have a specific y-intercept, the term "y-intercept" generally refers to the point where any function crosses the y-axis, which can vary depending on the function in question.
The domain of the absolute value parent function, ( f(x) = |x| ), is all real numbers, expressed as ( (-\infty, \infty) ). The range is all non-negative real numbers, represented as ( [0, \infty) ), since the absolute value cannot be negative.
The absolute value of a function changes the original function by ensuring that any negative y values will in essence be positive. For instance, the function y = absolute value (x) will yield the value +1 when x equals -1. Graphically, this function will look like a "V".
The graph of the absolute value parent function, ( f(x) = |x| ), has a distinct V-shape that opens upwards. It is symmetric about the y-axis, meaning it is an even function. The vertex of the graph is at the origin (0, 0), and the graph consists of two linear pieces: one with a slope of 1 for ( x \geq 0 ) and another with a slope of -1 for ( x < 0 ). The function is continuous and has a range of ( [0, \infty) ).
apex what is the range of the absolute... answer is nonnegative real num...
No, the y-intercept is not the same as the absolute value parent function. The absolute value parent function, represented as ( f(x) = |x| ), has a vertex at the origin (0, 0), which serves as its y-intercept. While the absolute value function does have a specific y-intercept, the term "y-intercept" generally refers to the point where any function crosses the y-axis, which can vary depending on the function in question.
The domain of the absolute value parent function, ( f(x) = |x| ), is all real numbers, expressed as ( (-\infty, \infty) ). The range is all non-negative real numbers, represented as ( [0, \infty) ), since the absolute value cannot be negative.
It’s vertex is not at the origin
apex what is the range of the absolute... answer is nonnegative real num...
The absolute value function returns the absolute value of a number.
Its vertex is not at the origin
An absolute-value function
No it is not
No, There exists a counter example in the page 244 of the book Grimmett & Stirzaker, One thousand exercises in probability. The example is a Bernoulli random variable with parameter 1/3.
f(x) = |f(x)|/3
The absolute value of a function changes the original function by ensuring that any negative y values will in essence be positive. For instance, the function y = absolute value (x) will yield the value +1 when x equals -1. Graphically, this function will look like a "V".