Parametric.
If the distribution is parametric then yes.
yes
Parametric statistical tests assume that your data are normally distributed (follow a classic bell-shaped curve). An example of a parametric statistical test is the Student's t-test.Non-parametric tests make no such assumption. An example of a non-parametric statistical test is the Sign Test.
* Always when the assumptions for the specific test (as there are many parametric tests) are fulfilled. * When you want to say something about a statistical parameter.
Parametric.
If the distribution is parametric then yes.
non-parametric I believe the above is a reductionistic assumption bassed upon ill-informed logic. Chi-square is a statistic that is related to the central limit theorem in the sense that proportions are in fact means, and that proportions are normally distributed (with a mean of pi [not 3.141592653...] and a variance of pi*(1-pi)). Therefore, we can perform a normal curve test for examining the difference between proportions such that Z squared = chi square on one degree of freedom. Since Z is indubitably a parametric test, and chi square can be related to Z, we can infer that it is, in fact, parametric. From another approach, a parametric test is a test that makes an assumption about the value of a parameter (the measure of the population rather than your sample) in a statistical density function. Since our expected frequencies are based upon either theory, or a mathematical assumption based upon the average of our presented frequencies, i.e. the mean, we are making an assumption about what the parameter of our distribution would be. Therefore, given this assumption, and the relationship of chi square to the normal curve, one can argue for chi square being a parametric test.
yes
Parametric statistical tests assume that your data are normally distributed (follow a classic bell-shaped curve). An example of a parametric statistical test is the Student's t-test.Non-parametric tests make no such assumption. An example of a non-parametric statistical test is the Sign Test.
Parametric for one set?! Yeah
* Always when the assumptions for the specific test (as there are many parametric tests) are fulfilled. * When you want to say something about a statistical parameter.
Binomial is a non- parametric test. Since this binomial test of significance does not involve any parameter and therefore is non parametric in nature, the assumption that is made about the distribution in the parametric test is therefore not assumed in the binomial test of significance. In the binomial test of significance, it is assumed that the sample that has been drawn from some population is done by the process of random sampling. The sample on which the binomial test of significance is conducted by the researcher is therefore a random sample.
A classic would be the Kolmogorov-Smirnov test.
It is not.It is not.It is not.It is not.
The Fisher F-test for Analysis of Variance (ANOVA).
t-test