It is the locus of all points such that their distance from a fixed line (the directrix) is the same as their distance from a fixed point which is not on that line (the focus).
The locus of all points that are the same distance from two given points is a perpendicular bisector of the line segment connecting those two points. This line is equidistant from each of the two points at all locations along its length.
A half of a hyperbola is defined as the locus of points such that the distance of the point from one fixed point (a focus) and its distance from a fixed line (the directrix) is a constant that is greater than 1 (the eccentricity). By symmetry, a hyperbola has two foci and two directrices.
A line is the locus of points such that the gradient (slope) between that point and one fixed point in the plane is a constant. Technically, that definition does not include a vertical line because its gradient is not defined! You could get around that this by requiring that either the gradient is a constant or, if it is undefined, then the inverse gradient (dx/dy) is constant.
a straight line ..
parabola
No. A line is the locus of all points located between any two points.
It is the locus of all points such that their distance from a fixed line (the directrix) is the same as their distance from a fixed point which is not on that line (the focus).
line
are the same distance from two points... Apex - TF
The locus of points at a given distance to a line would be a line parallel to the first line. Assuming that both lines are straight.
Given a straight line (a directrix) and a point (the focus) which is not on that line, a parabola is locus of all points whose distance form the directrix is the same as its distance from the focus.
Straight line
The locus of all points that are the same distance from two given points is a perpendicular bisector of the line segment connecting those two points. This line is equidistant from each of the two points at all locations along its length.
A pair of parallel lines at a distance of 1 cm from the line Q.
A half of a hyperbola is defined as the locus of points such that the distance of the point from one fixed point (a focus) and its distance from a fixed line (the directrix) is a constant that is greater than 1 (the eccentricity). By symmetry, a hyperbola has two foci and two directrices.
A line is the locus of points such that the gradient (slope) between that point and one fixed point in the plane is a constant. Technically, that definition does not include a vertical line because its gradient is not defined! You could get around that this by requiring that either the gradient is a constant or, if it is undefined, then the inverse gradient (dx/dy) is constant.