here is a photo that has been modified by the complex formula w=1/z, where
z=x+iy. the photo is inverted as per the LINK below.
Chat with our AI personalities
In the complex plane, each complex number is represented by a point, with the real part as the x-coordinate and the imaginary part as the y-coordinate. The mapping of complex numbers in the complex plane allows us to visualize operations like addition, subtraction, multiplication, and division geometrically. It also enables us to study properties such as modulus, argument, and conjugate of complex numbers.
It helps to visualize the numbers on a plane. The complex numbers occupy the entire plane. The real numbers are all the numbers on the horizontal axis, the imaginary numbers are all the numbers on the vertical axis. A complex number thus has a real and an imaginary part, a + bi, where a and be are real numbers (for example, 3 - 2i).
The answer depends on the domain. If the domain is non-negative real numbers, then the range is the whole of the real numbers. If the domain is the whole of the real numbers (or the complex plane) , the range is the complex plane.
The answer depends on what group or field the function is defined on. In the complex plane, the range is the complex plane. If the domain is all real numbers and the radical is an odd root (cube root, fifth root etc), the range is the real numbers. Otherwise, it is the complex plane. If the domain is non-negative real numbers, the range is also the real numbers.
In the Argand diagram (complex plane), numbers on the horizontal axis represent real numbers.
The horizontal axis is the real numbers.