answersLogoWhite

0


Best Answer

consider a matrix A
obtain a transformation which will diagonalize the matrix.Whatare the coordinates of an arbitrary vector
a=traspos(x,y,z)
with respect to the basis set which diagonalizes A?

User Avatar

Wiki User

āˆ™ 15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Obtain a transformation which will diagonalize the matrix?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How can I use the numpy diagonalize function to find the eigenvalues and eigenvectors of a matrix in Python?

To find the eigenvalues and eigenvectors of a matrix using the numpy diagonalize function in Python, you can first create a matrix using numpy arrays. Then, use the numpy.linalg.eig function to compute the eigenvalues and eigenvectors. Here's an example code snippet: python import numpy as np Create a matrix A np.array(1, 2, 3, 4) Compute eigenvalues and eigenvectors eigenvalues, eigenvectors np.linalg.eig(A) print("Eigenvalues:", eigenvalues) print("Eigenvectors:", eigenvectors) This code will output the eigenvalues and eigenvectors of the matrix A.


the matrix sum below?

transformation


4. Derive the matrix for inverse transformation.?

I could do that if you gave me the original matrix.


Difference between 3D transformation and 2D transformation?

difference between 2d and 3d transformation matrix


When you multiply by a transformation it is multiplied on the left of the matrix?

somebody answer


Derive the matrix for inverse transformation in graphics?

reconvene


When you multiply by a transformation it is multiplied on the left of the vertex matrix?

not all the time


What does rotation mean in termsof inverse of orthogonal matrix?

The inverse of a rotation matrix represents a rotation in the opposite direction, by the same angle, about the same axis. Since M-1M = I, M-1(Mv) = v. Thus, any matrix inverse will "undo" the transformation of the original matrix.


Which specific linear algebraic and related mathematical techniques are employed in geometric transformation?

Matrix multiplication is the most likely technique.


How do you determine the invariant point in a transformation of a relation?

the invarient point is the points of the graph that is unaltered by the transformation. If point (5,0) stays as (5,0) after a transformation than it is a invariant point The above just defines an invariant point... Here's a method for finding them: If the transformation M is represented by a square matrix with n rows and n columns, write the equation; Mx=x Where M is your transformation, and x is a matrix of order nx1 (n rows, 1 column) that consists of unknowns (could be a, b, c, d,.. ). Then just multiply out and you'll get n simultaneous equations, whichever values of a, b, c, d,... satisfy these are the invariant points of the transformation


What is the significance of the inverse of the Jacobian matrix in the context of mathematical transformations?

The inverse of the Jacobian matrix is important in mathematical transformations because it helps to determine how changes in one set of variables correspond to changes in another set of variables. It is used to calculate the transformation between different coordinate systems and is crucial for understanding the relationship between input and output variables in a transformation.


Explain Shearing and reflection as a technique of 2d transformation?

ShearingFor shear mapping (visually similar to slanting), there are two possibilities. For a shear parallel to the x axis has x' = x + ky and y' = y; the shear matrix, applied to column vectors, is: A shear parallel to the y axis has x' = xand y' = y + kx, which has matrix form:ReflectionTo reflect a vector about a line that goes through the origin, let be a vector in the direction of the line: To reflect a point through a plane ax + by + cz = 0 (which goes through the origin), one can use , where is the 3x3 identity matrix and is the three-dimensional unit vector for the surface normal of the plane. If the L2 norm of a,b, and c is unity, the transformation matrix can be expressed as:Note that these are particular cases of a Householder reflection in two and three dimensions. A reflection about a line or plane that does not go through the origin is not a linear transformation; it is an affine transformation.