answersLogoWhite

0

consider a matrix A
obtain a transformation which will diagonalize the matrix.Whatare the coordinates of an arbitrary vector
a=traspos(x,y,z)
with respect to the basis set which diagonalizes A?

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach

Add your answer:

Earn +20 pts
Q: Obtain a transformation which will diagonalize the matrix?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

4. Derive the matrix for inverse transformation.?

I could do that if you gave me the original matrix.


How are coordinates of the image related to the coordinates of the preimage?

The coordinates of the image are typically related to the coordinates of the preimage through a specific transformation, which can include translations, rotations, reflections, or dilations. For example, if a transformation is defined by a function or a matrix, the coordinates of the image can be calculated by applying that function or matrix to the coordinates of the preimage. Thus, the relationship depends on the nature of the transformation applied.


What does rotation mean in termsof inverse of orthogonal matrix?

The inverse of a rotation matrix represents a rotation in the opposite direction, by the same angle, about the same axis. Since M-1M = I, M-1(Mv) = v. Thus, any matrix inverse will "undo" the transformation of the original matrix.


Write the transformation matrix for 2D rotation?

For counterclockwise rotation, the matrix has the following elements. I will write (11) for the first row, first column etc. since there is no way to easily repesent a matrix here. We rotate by an angle theta. (11) is cos theta (12) negative sin theta (21) is sin theta and (22) is cos theta


What is an eigenvalue?

If a linear transformation acts on a vector and the result is only a change in the vector's magnitude, not direction, that vector is called an eigenvector of that particular linear transformation, and the magnitude that the vector is changed by is called an eigenvalue of that eigenvector.Formulaically, this statement is expressed as Av=kv, where A is the linear transformation, vis the eigenvector, and k is the eigenvalue. Keep in mind that A is usually a matrix and k is a scalar multiple that must exist in the field of which is over the vector space in question.