answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

How do you look at a graph and tell what the quadratic function i?

To determine the quadratic function from a graph, first identify the shape of the parabola, which can open upwards or downwards. Look for key features such as the vertex, x-intercepts (roots), and y-intercept. The standard form of a quadratic function is ( f(x) = ax^2 + bx + c ), where ( a ) indicates the direction of the opening. By using the vertex and intercepts, you can derive the coefficients to write the specific equation of the quadratic function.


What is a technique used to rewrite a quadratic function in standard form to vertex from?

A common technique to rewrite a quadratic function in standard form ( ax^2 + bx + c ) to vertex form ( a(x - h)^2 + k ) is called "completing the square." This involves taking the coefficient of the ( x ) term, dividing it by 2, squaring it, and then adding and subtracting this value inside the function. By rearranging, you can express the quadratic as a perfect square trinomial plus a constant, which directly gives you the vertex coordinates ( (h, k) ).


What is the highest or lowest point on the graph of a quadratic function?

The highest or lowest point on the graph of a quadratic function, known as the vertex, depends on the direction of the parabola. If the parabola opens upwards (the coefficient of the (x^2) term is positive), the vertex represents the lowest point. Conversely, if the parabola opens downwards (the coefficient is negative), the vertex is the highest point. The vertex can be found using the formula (x = -\frac{b}{2a}) to find the (x)-coordinate, where (a) and (b) are the coefficients from the quadratic equation (ax^2 + bx + c).


Do you have find the croodinates for the vertex for the quadratic function?

Yes, the coordinates for the vertex of a quadratic function in the form (y = ax^2 + bx + c) can be found using the formula (x = -\frac{b}{2a}) to determine the x-coordinate. Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. This gives you the vertex in the form ((x, y)).


What is the vertex of the quadratic function f(x)x2 plus c?

The vertex of the quadratic function ( f(x) = ax^2 + bx + c ) can be found using the formula ( x = -\frac{b}{2a} ). Once you determine the x-coordinate of the vertex, you can substitute it back into the function to find the corresponding y-coordinate. Therefore, the vertex is at the point ( \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right) ). If the function is given as ( f(x) = x^2 + c ) (where ( a = 1 ) and ( b = 0 )), the vertex simplifies to ( (0, c) ).

Related Questions

What is the definition of a Vertex form of a quadratic function?

it is a vertices's form of a function known as Quadratic


What is the vertex of the quadratic function?

It if the max or minimum value.


What reveals a translation of a parent quadratic function?

vertex


What different information do you get from vertex form and quadratic equation in standard form?

The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.


What things are significant about the vertex of a quadratic function?

It is a turning point. It lies on the axis of symmetry.


What is the maximum and minimum of quadratic function parent function?

The minimum is the vertex which in this case is 0,0 or the origin. There isn't a maximum.....


How do you look at a graph and tell what the quadratic function i?

To determine the quadratic function from a graph, first identify the shape of the parabola, which can open upwards or downwards. Look for key features such as the vertex, x-intercepts (roots), and y-intercept. The standard form of a quadratic function is ( f(x) = ax^2 + bx + c ), where ( a ) indicates the direction of the opening. By using the vertex and intercepts, you can derive the coefficients to write the specific equation of the quadratic function.


What name is given to the turning point also known as the maximum or minimum of the graph of a quadratic function?

vertex


What is a technique used to rewrite a quadratic function in standard form to vertex from?

A common technique to rewrite a quadratic function in standard form ( ax^2 + bx + c ) to vertex form ( a(x - h)^2 + k ) is called "completing the square." This involves taking the coefficient of the ( x ) term, dividing it by 2, squaring it, and then adding and subtracting this value inside the function. By rearranging, you can express the quadratic as a perfect square trinomial plus a constant, which directly gives you the vertex coordinates ( (h, k) ).


What is the highest or lowest point on the graph of a quadratic function?

The highest or lowest point on the graph of a quadratic function, known as the vertex, depends on the direction of the parabola. If the parabola opens upwards (the coefficient of the (x^2) term is positive), the vertex represents the lowest point. Conversely, if the parabola opens downwards (the coefficient is negative), the vertex is the highest point. The vertex can be found using the formula (x = -\frac{b}{2a}) to find the (x)-coordinate, where (a) and (b) are the coefficients from the quadratic equation (ax^2 + bx + c).


Do you have find the croodinates for the vertex for the quadratic function?

Yes, the coordinates for the vertex of a quadratic function in the form (y = ax^2 + bx + c) can be found using the formula (x = -\frac{b}{2a}) to determine the x-coordinate. Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. This gives you the vertex in the form ((x, y)).


What is the vertex of the quadratic function f(x)x2 plus c?

The vertex of the quadratic function ( f(x) = ax^2 + bx + c ) can be found using the formula ( x = -\frac{b}{2a} ). Once you determine the x-coordinate of the vertex, you can substitute it back into the function to find the corresponding y-coordinate. Therefore, the vertex is at the point ( \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right) ). If the function is given as ( f(x) = x^2 + c ) (where ( a = 1 ) and ( b = 0 )), the vertex simplifies to ( (0, c) ).