In the context of partial differential equations (PDEs), a steady state refers to a condition where the system's variables do not change over time, meaning that the time derivative is zero. This implies that the solution to the PDE is time-independent, and any spatial variations in the solution remain constant. Steady state solutions are often sought in problems involving heat diffusion, fluid flow, and other dynamic processes to simplify analysis and understand long-term behavior. In mathematical terms, steady state can be represented by setting the time-dependent term in the governing equation to zero.
Chat with our AI personalities
Acceleration = 0 because the car is moving at a STEADY velocity. It is neither speeding up, nor slowing down.
Equations are statements that state two expressions are equal, while inequalities are statements that state two expressions are not equal, meaning one is greater or less than the other. The graph of the solution set of an equation is a line or a curve, while the graph of the solution set of an inequality is a region at one side of the boundary line or curve obtained by supposing that the inequality was an equation.
steady persistence in a course of action, a purpose, a state, etc., esp. in spite of difficulties, obstacles, or discouragement. 2. Theology. continuance in a state of grace to the end, leading to eternal salvation
A quick outline of the module. Topics to by taught/ but no explainations, examples,etc. Example... It may state that students will be learning how to solve quadatic equations by graphing, factoring, completing the square, and using the quadratic formula.
If the discriminant - the part under the radical sign in the quadratic formula - is negative, then the result is complex, it is as simple as that. You can't convert a complex number to a real number. If a particular problem requires only real-number solutions, then - if the formula gives complex numbers - you can state that there is no solution.