The intersection of three planes is either a point, a line, or there is no intersection if any two of the planes are parallel to each other. This tells us about possible solutions to 3 equations in 3 unknowns. There may be one solution, no solution, or infinite number of solutions.
Intersection of Medians-Centroid Intersection of Altitudes-Orthocentre
A volume.
Yes, it is possible for three distinct planes to intersect at a line.
centroid
The intersection of three planes can be a plane (if they are coplanar), a line, or a point.
The intersection of three planes is either a point, a line, or there is no intersection if any two of the planes are parallel to each other. This tells us about possible solutions to 3 equations in 3 unknowns. There may be one solution, no solution, or infinite number of solutions.
It is the intersection of two planes or the line joining two vertices.
If you draw a capital "Y" with say each angle = 120 degrees, then the three lines will represent where the edges of the planes meet each other and the centre point will be the vertex where the three planes intersect. You are basically looking at the corner of a cube at an angle. If you connect the ends of the three lines you will be looking down at a triangular pyramid (three faces with three edges and the vertex in the centre).
In three-dimensional space, two planes can either:* not intersect at all, * intersect in a line, * or they can be the same plane; in this case, the intersection is an entire plane.
Intersection of Medians-Centroid Intersection of Altitudes-Orthocentre
No, small planes can have only three..No, small planes can have only three..
yes, three planes can intersect in one point.
Yes, there are three ways that two different planes can intersect a line: 1) Both planes intersect each other, and their intersection forms the line in the system. This system's solution will be infinite and be the line. 2) Both planes intersect the line at two different points. This system is inconsistent, and there is no solution to this system. However, both planes will still be intersecting the same line, albeit at different locations on the line. 3) Both planes intersect each other, but their intersection does NOT form the line in the system. However, if the line in the system intersects the planes' intersection, then they will all intersect a single point. The solution will be finite and be a single point. There are also 3 ways two different planes WON'T both intersect a line. 1) The two planes and the line are all parallel to each other, and none of them intersect each other. 2) The line is parallel to one plane, but intersects the other plane. 3) The same as #2, but now the line is parallel to the other plane and intersects the one plane.
orthocenter
It is the orthocentre.
A volume.