Circle
Chat with our AI personalities
Sum of the powers. Thus: xa * xb = xa+b
Any number raised to the power 0 is 1. This follow from the law of multiplications of power: xa * xb = xa+b Now, if you put b = 0, you get xa + x0 = xa+0 and since a+0 = a, the right hand side is xa. So you have xa * x0 = xa and using the property of the multiplicative identity, xa = 1.
It is a consequence of the definition of the index laws. xa * xb = xa+b If you put b = 0 in the above equation, then you get xa * x0 = xa+0 But a+0 = a so that the right hand side becomes xa Thus the equation now reads xa * x0 = xa For that to be true for all x, x0 must be the identity element for multiplication. That is x0 = 1 for all x.
Any number to the power zero is equal to one. That can be derived from the following index law: xa*xb = xa+b (x not zero) Now let b = 0 so that the above becomes xa*x0 = xa+0 so xa*x0 = xa (since a+0 = a) That is, any number multiplied by x0 is the number itself. That can be true only if x0 is the multiplicative identity, that is, only if x0 = 1.
Matrix inverses and determinants, square and nonsingular, the equations AX = I and XA = I have the same solution, X. This solution is called the inverse of A.