The "x values that work are the domain numbers like for y=x+1 would be any real number. But, y= sqrx x would have to be non-negative.
The set of all first coordinates of a relation or function is known as the domain. It consists of all the input values for which the relation or function is defined. In the context of a function, these first coordinates correspond to the values that can be mapped to an output in the codomain. Thus, the domain provides information about the permissible inputs for the function or relation.
I cannot see the graph you are referring to. However, to determine the domain of a function, you need to identify all possible input values (x-values), while the range consists of all possible output values (y-values). If you provide more details about the function or its characteristics, I can help you determine the domain and range.
To determine the highest value on the domain of a function, you first need to identify the function's domain, which consists of all permissible input values (x-values). The highest value would be the maximum point within that domain. If the domain is restricted to a specific interval, the highest value would be the endpoint of that interval, assuming the function is defined and continuous at that point. Always consider the behavior of the function at the boundaries of the domain to ensure you identify the correct maximum.
To determine the domain of the function ( g(x) = x + 2x - 1 ), we first need to simplify it. The function simplifies to ( g(x) = 3x - 1 ), which is a linear function. Linear functions have a domain of all real numbers, so there are no numbers that are not part of the domain. Thus, the domain of ( g(x) ) is all real numbers.
If a vertical line, within the domain of the function, intersects the graph in more than one points, it is not a function.
i think that the range and the domain of a parabola is the coordinates of the vertex
The set of all first coordinates of a relation or function is known as the domain. It consists of all the input values for which the relation or function is defined. In the context of a function, these first coordinates correspond to the values that can be mapped to an output in the codomain. Thus, the domain provides information about the permissible inputs for the function or relation.
A number does not have a range and domain, a function does.
The domain of a function determines what values of x you can plug into it whereas the range of a function determines the values that are your results. Therefore, look at the y-axis if you want to determine the range of a function and look at the x-axis if you want to determine the domain.
I cannot see the graph you are referring to. However, to determine the domain of a function, you need to identify all possible input values (x-values), while the range consists of all possible output values (y-values). If you provide more details about the function or its characteristics, I can help you determine the domain and range.
To determine the highest value on the domain of a function, you first need to identify the function's domain, which consists of all permissible input values (x-values). The highest value would be the maximum point within that domain. If the domain is restricted to a specific interval, the highest value would be the endpoint of that interval, assuming the function is defined and continuous at that point. Always consider the behavior of the function at the boundaries of the domain to ensure you identify the correct maximum.
To determine the domain of the function ( g(x) = x + 2x - 1 ), we first need to simplify it. The function simplifies to ( g(x) = 3x - 1 ), which is a linear function. Linear functions have a domain of all real numbers, so there are no numbers that are not part of the domain. Thus, the domain of ( g(x) ) is all real numbers.
If a vertical line, within the domain of the function, intersects the graph in more than one points, it is not a function.
The first coordinates in a set of ordered pairs of a relation or function are referred to as the "domain." Each unique first coordinate represents an input value for the function, which can be associated with one or more corresponding second coordinates (output values). In the context of a function, each input must map to exactly one output, ensuring that no input is repeated with different outputs.
The domain of a function represented by a table consists of all the input values (usually the x-values) listed in the table. These values indicate the specific points at which the function is defined. To determine the domain, simply identify and list the unique x-values from the table. If any values are missing or not represented, they are excluded from the domain.
The domain of a function is simply the x values of the function
No, when the domain repeats it is no longer a function