Periodicity is not a characteristic.
output
The domains of polynomial, cosine, sine and exponential functions all contain the entire real number line. The domain of a rational function does not, since its denominator has zeros, and neither does the domain of a tangent function. (1/2)x = true (8/3)x = true
The logarithm function. If y = bx, then x = by is the inverse --> y = logb(x). If b = 10, then the function is often stated with the '10' implied: just log(x). For natural logarithms (y = ex), the function y = ln(x) [which indicates loge(x)] is the inverse.
No, an function only contains a certain amount of vertices; leaving a logarithmic function to NOT be the inverse of an exponential function.
The inverse function of the exponential is the logarithm.
The logarithm function. If you specifically mean the function ex, the inverse function is the natural logarithm. However, functions with bases other than "e" might also be called exponential functions.
The exponential function, in the case of the natural exponential is f(x) = ex, where e is approximately 2.71828. The logarithmic function is the inverse of the exponential function. If we're talking about the natural logarithm (LN), then y = LN(x), is the same as sayinig x = ey.
A logarithm can not be converted in to an exponential, as an exponential is defined for all real numbers, while a logarithm is only defined for numbers greater than zero. However, a logarithm can be related to an exponential by the fact that they are inverses of each other. e.g. if y = 2^x the x = log2y
The y-axis on a semi logarithmic chart is exponential. This way, when an exponential function is depicted in the chart, it will evolve as a linear function. You often do this to proove that the function is exponential and/or as a tool to help you find the equation for the function. For more see: http://www.answers.com/topic/semi-logarithmic-plot
There are no points of discontinuity for exponential functions since the domain of the general exponential function consists of all real values!
The logarithmic function is not defined for zero or negative numbers. Logarithms are the inverse of the exponential function for a positive base. Any exponent of a positive base must be positive. So the range of any exponential function is the positive real line. Consequently the domain of the the inverse function - the logarithm - is the positive real line. That is, logarithms are not defined for zero or negative numbers. (Wait until you get to complex analysis, though!)
Periodicity is not a characteristic.
anti logarithm
A __________ function takes the exponential function's output and returns the exponential function's input.
Apex: false A logarithmic function is not the same as an exponential function, but they are closely related. Logarithmic functions are the inverses of their respective exponential functions. For the function y=ln(x), its inverse is x=ey For the function y=log3(x), its inverse is x=3y For the function y=4x, its inverse is x=log4(y) For the function y=ln(x-2), its inverse is x=ey+2 By using the properties of logarithms, especially the fact that a number raised to a logarithm of base itself equals the argument of the logarithm: aloga(b)=b you can see that an exponential function with x as the independent variable of the form y=f(x) can be transformed into a function with y as the independent variable, x=f(y), by making it a logarithmic function. For a generalization: y=ax transforms to x=loga(y) and vice-versa Graphically, the logarithmic function is the corresponding exponential function reflected by the line y = x.
The exponential function, logarithms or trigonometric functions are functions whereas a complex variable is an element of the complex field. Each one of the functions can be defined for a complex variable.