Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
For Apex the answer is “True“.
false
True means that it is correct. False means it is not true.
false
False.Beethoven was a famous composer of classical music.
It is false.
False
False
True AND False OR True evaluates to True. IT seems like it does not matter which is evaluated first as: (True AND False) OR True = False OR True = True True AND (False OR True) = True AND True = True But, it does matter as with False AND False OR True: (False AND False) OR True = False OR True = True False AND (False OR True) = False AND True = False and True OR False AND False: (True OR False) AND False = True AND False = False True OR (False AND False) = True OR False = True Evaluated left to right gives a different answer if the operators are reversed (as can be seen above), so AND and OR need an order of evaluation. AND can be replaced by multiply, OR by add, and BODMAS says multiply is evaluated before add; thus AND should be evaluated before OR - the C programming language follows this convention. This makes the original question: True AND False OR True = (True AND False) OR True = False OR True = True
True. Every second of a jump is in freefall from when the jumper leaves the plane until the deployment sequence begins.
Seabiscuit is the classic underdog story. The small, brokendown horse that beat everybody. It's a great story, especially since it's true.
False. It is software.
It is famous in computer science even today because it helps verify if something is true or false.
The film was named Seabiscuit. It was based on the book "Seabiscuit: An American Legend" by Laura Hillenbrand.
True
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False