False.
True
True
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
True
Yes
True: they a living plans which requires periodic reviews
true
true
T
false!!
False
True
IT is False, False and so False.
IT is False, False and so False.
The ticketing area is more secure than the area beyond the security check point
False