answersLogoWhite

0

It's the same as that of Earth but the value of g varies from one object to the other. The value of the gravitational constant or the BIG "G" remains constant. I think you confused it with the LITTLE "g" which is the gravitation of a object (one with mass) or the acceleration due to gravity. The value of g on Earth and Moon is 9.8m/s^2 and 1.6249m/s^2, respectively. I hope this answers you all.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: Value of gravitational constant on earth and moon?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the value of gravitational constant in the surface of moon?

The gravitational constant "G" is the same everywhere. The force of gravity on the moon, expressed as the acceleration of a falling body is 1.62 metres/sec2. compared with 9.81 m/s2 on the earth.


Does the moon have gravitational potential energy?

The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.The gravitational potential energy doesn't actually reside in a single object, but in the relationship between two objects. Thus, there is a gravitational potential energy between Earth and Moon, or between a rock that you lift up on the Moon, and the Moon.


What is the gravitational constant?

(This should not be confused with g=9.8m/s/s)Newton's Law of Universal Gravitation describes the gravitational force between two objects (like the sun and the Earth or the Earth and a satellite or the Earth and its moon)gravitational force G = 6.67 × 10-11m3 kg-1 s-2 used in the formula, F = G (M1 * M2)R2where F is the gravitational force between two masses,G is the gravitational constant in N,m1 is the mass of the first object in kg,m2 is the mass of the second object in kg,R is distance apartIn some books, it is written as Cavendish experiment.


An astronaut's helmet has a mass of 1.2 kg on earth and weighs 2.6 pounds it weighs 0.4 pounds on the moon and has a mass of how many kilograms?

1.2 kg. Mass is constant regardless of gravitational pull (loction).


Where is its gravitational potential energy minimum?

The answer depends on what "it" is and the overall context. The answer could be the centre of the earth where the earth's gravity has no effect, or the Lagrange point where the gravitational forces of the moon, earth and sun balance each other.