answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
BeauBeau
You're doing better than you think!
Chat with Beau

Add your answer:

Earn +20 pts
Q: What are the 2 subset of a line define each?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How many patterns of subset can you make from a set?

given any set of n objects, there are 2^n subsets. This comes from the fact that each item is either in or not in any given subset. So for all n objects, each one has two possibilities, either it is or is not in a subset. Then 2^n come from the multiplication principle.


Can two points determine a plane?

No, 2 points define a line, 3 points define a plane.


What are example of proper subset?

{1,2,4.7} is a proper subset of {1, 2, 3, 4, 4.7, 5}


Why does a set containing n element have 2n subsets?

I presume you meant 2^n (2 raised to the nth power), not 2*n (2 times n). That's answers.com's character set problem again (I trust, giving you the benefit of the doubt). The answer is that for each of the n elements, it is either in any particular subset or it isn't. Which elements are in and which are not in a subset defines the subset. So for example, if n is 3, say a, b, and c, there are 2 sub-collections of the set of all subsets: those containing a and those not containing a. In each of those sub-collections, there are 2 sub-collections based on whether they contain b, for a total of 4 (2*2) sub-collections. Finally, of each of these 4, there are 2 subsets: those containing c and those not containing c, for a total of 8 (2*2*2 or 2^3) subsets. Got it?


What is trivial subset?

The trivial subsets of a set are those subsets which can be found without knowing the contents of the set. The empty set has one trivial subset: the empty set. Every nonempty set S has two distinct trivial subsets: S and the empty set. Explanation: This is due to the following two facts which follow from the definition of subset: Fact 1: Every set is a subset of itself. Fact 2: The empty set is subset of every set. The definition of subset says that if every element of A is also a member of B then A is a subset of B. If A is the empty set then every element of A (all 0 of them) are members of B trivially. If A = B then A is a subset of B because each element of A is a member of A trivially.