It's the number of mappings, *or* he number of available objects to map something to, *or*...See also http://en.wikipedia.org/wiki/Cardinality
a cardinal is a type of bird that is read with a black looking mask around its eyes
It means without limit, a sequence that goes on and on forever.But if you really want to get into it, there are different "levels" of infinity: or infinities with different cardinalities.
11 = (42 - 4) - (4 / 4) 12 = (4 + 4) + (√4 + √4) 13 = (42 - 4) + (4 / 4) 14 = (4 + 4 + 4 + √4) 15 = (4 * 4) - (4 / 4) 16 = (4 + 4 + 4 + 4) 17 = (42 + √4) - (4 / 4) 18 = (42 + 4) - (4 - √4) 19 = (42 + 4) - (4 / 4) 20 = (4 * 4) + (√4 + √4)
Here is one set of solutions. The answers here are not unique. 1 = (4*4)/(4*4) 2 = 4/4 + 4/4 3 = (4+4+4)/4 4 = (4-4)*4 + 4 5 = (4*4 + 4) / 4 6 = 4 + (4+4)/4 7 = 4 + 4 - 4/4 8 = 4 + 4 + 4 - 4 9 = 4 + 4 + 4/4 10 = (44 - 4)/4
Googleplex to the tent powerr!! NO DUR!!!
It's the number of mappings, *or* he number of available objects to map something to, *or*...See also http://en.wikipedia.org/wiki/Cardinality
a cardinal is a type of bird that is read with a black looking mask around its eyes
It means without limit, a sequence that goes on and on forever.But if you really want to get into it, there are different "levels" of infinity: or infinities with different cardinalities.
To draw an E-R diagram for school fee management, identify the main entities involved such as the students, fees, payments, and classes. Establish the relationships between these entities by adding appropriate cardinalities and connect them with lines. Add attributes to each entity, such as student ID, fee amount, payment date, etc. Additionally, include any additional entities and relationships, like invoice generation or fee waivers, that are specific to the school's fee management process.
1 2 3 4 4+1 4+2 4+3 4+4 4+4+1 4+4+2 4+4+3 4+4+4 4+4+4+1 4+4+4+2 4+4+4+3 4+4+4+4 4+4+4+4+1 4+4+4+4+2 4+4+4+4+3 4+4+4+4+4 4+4+4+4+4+1 4+4+4+4+4+2 4+4+4+4+4+3 4+4+4+4+4+4 4+4+4+4+4+4+1 4+4+4+4+4+4+2 4+4+4+4+4+4+3 4+4+4+4+4+4+4 4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+4+4+2 I hope this is the answer you search for! (because it took some time!)
26
1 = 4*4/(4*4) 2 = 4/4+4/4 3 = (4+4+4)/4 4 = (4-4)/4+4 5 = 4^(4-4)+4 6 = (4+4)/4+4 7 = 4+4-4/4 8 = 4+4+4-4 9 = 4/4+4+4 10 = (4*4+4!)/4 11 = (4+4!)/4+4 12 = (4-4/4)*4 13 = (4+4!+4!)/4 14 = 4!/4+4+4 15 = 4*4-4/4 16 = 4*4+4-4 17 = 4*4+4/4 18 = (4*4!-4!)/4 19 = 4!-(4+4/4) 20 = (4/4+4)*4 21 = 4!+4/4-4 22 = 4!-(4+4)/4 23 = 4!-4^(4-4) 24 = 4*4+4+4 25 = 4!+(4/4)^4 26 = 4!+4!/4-4 27 = 4!+4-4/4 28 = (4+4)*4-4 29 = 4/4+4!+4 30 = (4*4!+4!)/4 31 = (4+4!)/4+4! 32 = 4^4/(4+4) 33 = (4-.4)/.4+4! 34 = 4!/4+4+4! 35 = (4.4/.4)+4! 36 = (4+4)*4+4 37 = 4/.4+4+4! 38 = 44-4!/4 39 = (4*4-.4)/.4 40 = (4^4/4)-4! 41 = (4*4+.4)/.4 42 = 4!+4!-4!/4 43 = 44-4/4 44 = 4*4+4+4! 45 = (4!/4)!/(4*4) 46 = (4!-4)/.4 - 4 47 = 4!+4!-4/4 48 = (4*4-4)*4 49 = 4!+4!+4/4 50 = (4*4+4)/.4 51 = 4!/.4-4/.4 52 = 44+4+4 53 = 44+4/.4 54 = (4!/4)^4/4! 55 = (4!-.4)/.4-4 56 = 4!+4!+4+4 57 = 4/.4+4!+4! 58 = (4^4-4!)/4 59 = 4!/.4-4/4 60 = 4*4*4-4 61 = 4!/.4+4/4 62 = (4!+.4+.4)/.4 63 = (4^4-4)/4 64 = 4^(4-4/4) 65 = 4^4+4/4 66 = (4+4!)/.4-4 67 = (4+4!)/.4+4 68 = 4*4*4+4 69 = (4+4!-.4)/.4 70 = (4^4+4!)/4 71 = (4!+4.4)/.4 72 = (4-4/4)*4! 73 = (.4√4+.4)/.4 74 = (4+4!)/.4+4 75 = (4!/4+4!)/.4 76 = (4!-4)*4-4 77 = (4!-.4)/.4+4! 78 = (4!*.4+4!)/.4 79 = (.4√4-.4)/.4 80 = (4*4+4)*4 81 = (4/4-4)^4 82 = 4!/.4+4!+4 83 = (4!-.4)/.4+4! 84 = (4!-4)*4+4 85 = (4/.4+4!)/.4 86 = (4-.4)*4!-.4 87 = 4!*4-4/.4 88 = 4^4/4+4! 89 90 = (4!/4)!/(4+4) 91 92 = (4!-4/4)*4 93 94 = (4+4!)/.4 + 4! 95 = 4!*4-4/4 96 = 4!*4+4-4 97 = 4!*4+4/4 98 = (4!+.4)*4+.4 99 = (4!+4!-4)/.4 100 = 4*4/(.4*.4)
(4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4) ÷ 4 = 27
4 +4+4+4+4+4+4+4+4=40
1 = 44 / 44 2 = 4 * 4 / (4 + 4) 3 = (4 + 4 + 4) / 4 4 = 4 + (4 * (4 - 4)) 5 = (4 + (4 * 4)) / 4 6 = 4 + ((4 + 4) / 4) 7 = (44 / 4) - 4 8 = 4 + 4 + 4 - 4 9 = 4 + 4 + (4 / 4) 10 = (44 - 4) / 4 11 = (4 / 4) + (4 / .4) 12 = (4 + 44) / 4 13 = 4 + ((4 - .4) / .4) 14 = (4 * (4 - .4)) - .4 15 = 4 + (44 / 4) 16 = (44 - 4) * .4 17 = (4 * 4) + (4 / 4) 18 = (44 * .4) + .4 19 = (4 + 4 - .4) / .4 20 = 4 * (4 + (4 / 4))
The primes required are: 2 = (4+4)/4 3 = (4+4+4)/4 5 = (4+4+4+4+4)/4 7 = (4*4+4+4+4)/4 11 = (4(4*4-4)-4)/4 13 = (4*(4*4-4)+4)/4 17 = (4*4*4+4)/4 19 = (4*(4*4+4)-4)/4 23 = (4*(4*4+4+4)-4)/4 29 = (4*(4*4+4+4+4)+4)/4 31 = (4*4*(4+4)-4)/4 37 = (4*4*(4+4)+4*4+4)/4 41 = (4^4-4*(4*4)+4)/4 43 = (4^4-4(4*4+4+4))/4 47 = (4^4-4*4*4-4)/4 The remainder are left as an exercise. It should be noted that most of these are impossible to express with only six fours without either defining new operators or allowing for facetious, unmathematical cheats such as allowing 44 to be used.