I think the following Wikipedia link on Fourier Series (see related links below), has the information that you're looking for.
Chat with our AI personalities
In Fourier series, the constant term, or the average value of the function over one period, is divided by two when computing the Fourier coefficients. This is because the constant term corresponds to the zero-frequency component, which represents the average value of the periodic function. When calculating the Fourier series, the coefficients are derived from integrals that include the full period of the function, leading to the factor of ( \frac{1}{2} ) for the constant term to ensure accurate representation. This adjustment maintains the overall balance of the series in reconstructing the original function.
You can graph both with Energy on the y-axis and frequency on the x. Such a frequency domain graph of a fourier series will be discrete with a finite number of values corresponding to the coefficients a0, a1, a2, ...., b1, b2,... Also, the fourier series will have a limited domain corresponding to the longest period of your original function. A fourier transforms turns a sum into an integral and as such is a continuous function (with uncountably many values) over the entire domain (-inf,inf). Because the frequency domain is unrestricted, fourier transforms can be used to model nonperiodic functions as well while fourier series only work on periodic ones. Series: discrete, limited domain Transform: continuous, infinite domain.
Joseph Fourier is a French mathematician and physicist. Fourier is generally credited with the discovery of the greenhouse effect.
Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.
discrete fourier transformer uses digital signals whereas the fast fourier transform uses both analog and digital.