tanx = 2*(sin2x - sin4x + sin6x - ... )However, be warned that this series is very slow to converge.
sinc^2(w)
Oh, the history of Fourier series is truly fascinating! It all began with Joseph Fourier, a brilliant mathematician in the 19th century. He discovered that you could represent complex periodic functions as a sum of simpler trigonometric functions. This insight revolutionized mathematics and has had a profound impact on fields like signal processing, physics, and engineering. Just imagine, breaking down intricate patterns into beautiful harmonious components - it's like creating a masterpiece on canvas with just a few brushstrokes.
In terms of mathematics, a coefficient plays the role of a multiplicative factor in a series or an expression. The two different kinds of coefficients include numbers and letters.
The word sine, not sinx is the trigonometric function of an angle. The answer to the math question what is the four series for x sine from -pi to pi, the answer is 24.3621.
Fourier series and the Fourier transform
what are the limitations of forier series over fourier transform
Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.
Spectral analysis of a repetitive waveform into a harmonic series can be done by Fourier analyis. This idea is generalised in the Fourier transform which converts any function of time expressed as a into a transform function of frequency. The time function is generally real while the transform function, also known as a the spectrum, is generally complex. A function and its Fourier transform are known as a Fourier transform pair, and the original function is the inverse transform of the spectrum.
A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.
The Laplace transform is related to the Fourier transform, but whereas the Fourier transform expresses a function or signal as a series of modes ofvibration (frequencies), the Laplace transform resolves a function into its moments. Like the Fourier transform, the Laplace transform is used for solving differential and integral equations.
You can graph both with Energy on the y-axis and frequency on the x. Such a frequency domain graph of a fourier series will be discrete with a finite number of values corresponding to the coefficients a0, a1, a2, ...., b1, b2,... Also, the fourier series will have a limited domain corresponding to the longest period of your original function. A fourier transforms turns a sum into an integral and as such is a continuous function (with uncountably many values) over the entire domain (-inf,inf). Because the frequency domain is unrestricted, fourier transforms can be used to model nonperiodic functions as well while fourier series only work on periodic ones. Series: discrete, limited domain Transform: continuous, infinite domain.
Joseph Fourier was the French mathematician and physicist after whom Fourier Series, Fourier's Law, and the Fourier Transform were named. He is commonly credited with discovering the greenhouse effect.
I think the following Wikipedia link on Fourier Series (see related links below), has the information that you're looking for.
Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.
The Fourier series can be used to represent any periodic signal using a summation of sines and cosines of different frequencies and amplitudes. Since sines and cosines are periodic, they must form another periodic signal. Thus, the Fourier series is period in nature. The Fourier series is expanded then, to the complex plane, and can be applied to non-periodic signals. This gave rise to the Fourier transform, which represents a signal in the frequency-domain. See links.
The Fast Fourier Transform is an implementation of the Discrete Fourier Transform. The DFT is a method of processing a time-sampled signal (eg, an audio wave) into a series of sines and cosines. As such, it is not a sorting algorithm, so this question does not make any sense.