To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).
A translation of 4 units to the right followed by a dilation of a factor of 2
To find the coordinates of point A after being dilated by a factor of 3, you multiply the original coordinates (x, y) of point A by 3. For example, if point A has coordinates (2, 4), the new coordinates after dilation would be (2 * 3, 4 * 3) or (6, 12). Thus, the coordinates of point A after dilation depend on its original position.
If the original point was (-4, 12) then the image is (-16, 48).
To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.
0
Well this is my thought depending on where the point of dilation is the coordinates of the give plane is determined. The point of dilation not only is main factor that positions the coordinates, but the scale factor has a huge impact on the placement of the coordinates.
A translation of 4 units to the right followed by a dilation of a factor of 2
If the original point was (-4, 12) then the image is (-16, 48).
To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.
0
Find the coordinates of the vertices of triangle a'b'c' after triangle ABC is dilated using the given scale factor then graph triangle ABC and its dilation A (1,1) B(1,3) C(3,1) scale factor 3
The dilation of 22 with scale factor 2.5 is 55.The formula for finding a dilation with a scale factor is x' = kx (k = scale factor), so x' = 2.5(22) = 55.
No a scale factor of 1 is not a dilation because, in a dilation it must remain the same shape, which it would, but the size must either enlarge or shrink.
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
Center and Scale Factor....
The type of dilation that occurs with a scale factor of 14 is enlargement. Any time the scale factor is larger than 1, it is enlargement.
Getting bigger. Dilation factor of 2, then it would get twice the size.