answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the image of Q for a dilation with center (0 0) and a scale factor of 0.5?

To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.


What is the transformation of B(4 8) when dilated by a scale factor of 2 using the origin as the center of dilation?

To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.


if i have a dilation of -3 i multiply by -3 right?

0


What are the coordinates of the image of the point (8-9) after a dilation by a scale factor of 5 origin as the dilation followed by a translation over the x-axis?

To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).


How do you enlarge a figure on a coordinate graph?

To enlarge a figure on a coordinate graph, you can apply a dilation transformation using a scale factor. Choose a center point for the dilation, often the origin or the center of the figure, and multiply the coordinates of each vertex by the scale factor. For example, if you use a scale factor of 2, each coordinate (x, y) becomes (2x, 2y), effectively doubling the size of the figure while maintaining its shape and proportions.

Related Questions

What are the coordinates for an image on a dilation with a center at the origin?

it is nothing


What is the transformation of B(4 8) when dilated by a scale factor of 2 using the origin as the center of dilation?

To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.


Triangle ABC below will be dilated with the origin as the center of dilation and scale factor of 1/2?

0.5


if i have a dilation of -3 i multiply by -3 right?

0


What are the coordinates of the image of the point (8-9) after a dilation by a scale factor of 5 origin as the dilation followed by a translation over the x-axis?

To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).


What is the transformation of C(9 3) when dilated by a scale factor of 3 using the origin as the center of dilation?

It is (27, 9).


How are the coordinates of the new point found if it is dilated with a scale factor of 3?

molly-tyga


A polygon will be dilated on a coordinate grid to create a smaller polygon. The polygon is dilated using the origin as center of dilation. Which rule could represent this dilation?

i can not tell you either


What is change of origin and change of scale?

Translation and dilation.


What is the point where the x-axis and the y-axis meet called?

the origin and it has the coordinates of (0,0)


How Translating the point of origin?

Origin is at points (0, 0) in coordinate geometry. If you are shifting/translating the origin, you have to add the respective x and y coordinates of the new origin with respect to the old origin to get the coordinates of the new origin.


Will a dilation of -1 have the same result to a reflection over the origin?

Yes.