If the original point was (-4, 12) then the image is (-16, 48).
To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
0
To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).
To enlarge a figure on a coordinate graph, you can apply a dilation transformation using a scale factor. Choose a center point for the dilation, often the origin or the center of the figure, and multiply the coordinates of each vertex by the scale factor. For example, if you use a scale factor of 2, each coordinate (x, y) becomes (2x, 2y), effectively doubling the size of the figure while maintaining its shape and proportions.
it is nothing
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
0.5
0
To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).
It is (27, 9).
molly-tyga
i can not tell you either
Translation and dilation.
the origin and it has the coordinates of (0,0)
Origin is at points (0, 0) in coordinate geometry. If you are shifting/translating the origin, you have to add the respective x and y coordinates of the new origin with respect to the old origin to get the coordinates of the new origin.
Yes.