answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve

Add your answer:

Earn +20 pts
Q: What are the differences between arithmetic and geometric sequences?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Difference between geometric mean and arithimetic mean?

You can find the differences between arithmetic and geometric mean in the following link: "Calculation of the geometric mean of two numbers".


What is the difference between geometric mean and arithmetic mean?

The difference between arithmetic and geometric mean you can find in the following link: "Calculation of the geometric mean of two numbers".


What is the diffeence between the term to term rule and the common difference in maths?

The common difference does not tell you the location of the sequence. For example, 3, 6, 9, 12, ... and 1, 4, 7, 10, .., or 1002, 1005, 1008, 1011, ... all have a common difference of 3 but it should be clear that the three sequences are different. A common difference is applicable to arithmetic sequences, not others such as geometric or exponential sequences.


Is sequence 3 9 91 6561 A arithmetic B geometric or c neither?

To check whether it is an arithmetic sequence, verify whether the difference between two consecutive numbers is always the same.To check whether it is a geometric sequence, verify whether the ratio between two consecutive numbers is always the same.


What is the difference between an arithmetic series and a geometric series?

An arithmetic series is the sequence of partial sums of an arithmetic sequence. That is, if A = {a, a+d, a+2d, ..., a+(n-1)d, ... } then the terms of the arithmetic series, S(n), are the sums of the first n terms and S(n) = n/2*[2a + (n-1)d]. Arithmetic series can never converge.A geometric series is the sequence of partial sums of a geometric sequence. That is, if G = {a, ar, ar^2, ..., ar^(n-1), ... } then the terms of the geometric series, T(n), are the sums of the first n terms and T(n) = a*(1 - r^n)/(1 - r). If |r| < 1 then T(n) tends to 1/(1 - r) as n tends to infinity.