answersLogoWhite

0

The difference between arithmetic and geometric mean you can find in the following link: "Calculation of the geometric mean of two numbers".

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
JudyJudy
Simplicity is my specialty.
Chat with Judy
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: What is arithmetic mean and geometric mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is a geometric property?

1.The Geometric mean is less then the arithmetic mean. GEOMETRIC MEAN < ARITHMETIC MEAN 2.


What is the difference between arithmetic mean and geometric mean?

Arhithmetic progression is linear, while geometric grows in a parabolic way (a curve).


What is the Relation between geometric mean and arithmetic mean?

The mean of the numbers a1, a2, a3, ..., an is equal to (a1 + a2 + a3 +... + an)/n. This number is also called the average or the arithmetic mean.The geometric mean of the positive numbers a1, a2, a3, ... an is the n-th roots of [(a1)(a2)(a3)...(an)]Given two positive numbers a and b, suppose that a< b. The arithmetic mean, m, is then equal to (1/2)(a + b), and, a, m, b is an arithmetic sequence. The geometric mean, g, is the square root of ab, and, a, g, b is a geometric sequence. For example, the arithmetic mean of 4 and 25 is 14.5 [(1/2)(4 + 25)], and arithmetic sequence is 4, 14.5, 25. The geometric mean of 4 and 25 is 10 (the square root of 100), and the geometric sequence is 4, 10, 25.It is a theorem of elementary algebra that, for any positive numbers a1, a2, a3, ..., an, the arithmetic mean is greater than or equal to the geometric mean. That is:(1/n)(a1, a2, a3, ..., an) &ge; n-th roots of [(a1)(a2)(a3)...(an)]


How are arithemetic and geometric sequences similar?

how are arithmetic and geometric sequences similar


Which explains why the sequence 216 12 23 is arithmetic or geometric?

The sequence 216 12 23 is neither arithmetic nor geometric.