The solution to a differential equation requires integration. With any integration, there is a constant of integration. This constant can only be found by using additional conditions: initial or boundary.
That depends on what type of equation it is because it could be quadratic, simultaneous, linear, straight line or even differential
A differential equation is a tool to certains carrers to find and solve all kinds of problems, in my case i'm a civil engineer and i use this tool to solve problems in the area of hidraulics, and in the area of structures. The differencial ecuations have all kinds of uses in the area of engieneering and in other fields too
Some expressions can't be factorised, and you have to use other methods to solve the equation.
There are different methods of using quadratic functions depending on the equation.
There are many kinds of differential equations and their solutions require different methods.
In its normal form, you do not solve differential equation for x, but for a function of x, usually denoted by y = f(x).
The Runge-Kutta method is one of several numerical methods of solving differential equations. Some systems motion or process may be governed by differential equations which are difficult to impossible to solve with emperical methods. This is where numerical methods allow us to predict the motion, without having to solve the actual equation.
George E. Forsythe has written: 'What is a satisfactory quadratic equation solver?' 'Finite-difference methods for partial differential equations' 'How do you solve a quadratic equation?'
I assume that you mean that you are given a differential equation dy/dx and want to solve it. If that is the case, then you would multiply by dx on both sides and then integrate both the left and right sides of the equation.
The solution to a differential equation requires integration. With any integration, there is a constant of integration. This constant can only be found by using additional conditions: initial or boundary.
Another method to solve differential equation is taking y and dy terms on one side, and x and dy terms on other side, then integrating on both sides.This is a general solution. So if we want to particular solution we choose initial conditions.
That depends on what type of equation it is because it could be quadratic, simultaneous, linear, straight line or even differential
z=pq
The answer will depend on the exact nature of the equation.
Monge's method, also known as the method of characteristics, is a mathematical technique used to solve certain types of partial differential equations. It involves transforming a partial differential equation into a system of ordinary differential equations by introducing characteristic curves. By solving these ordinary differential equations, one can find a solution to the original partial differential equation.
A differential equation is a tool to certains carrers to find and solve all kinds of problems, in my case i'm a civil engineer and i use this tool to solve problems in the area of hidraulics, and in the area of structures. The differencial ecuations have all kinds of uses in the area of engieneering and in other fields too