They are +/- 5*sqrt(2)
Circle equation: x^2 +y^2 -8x +4y = 30 Tangent line equation: y = x+4 Centre of circle: (4, -2) Slope of radius: -1 Radius equation: y--2 = -1(x-4) => y = -x+2 Note that this proves that tangent of a circle is always at right angles to its radius
k = 0.1
In trig, the secant squared divided by the tangent equals the hypotenuse squared divided by the product of the opposite and adjacent sides of the triangle.Details: secant = hypotenuse/adjacent (H/A) and tangent = opposite/adjacent (A/O);Then secant2/tangent = (H2/A2)/(O/A) = H2/A2 x A/O = H2/AO.
Circle equation: x^2 +y^2 -8x -16y -209 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius: 17 Slope of radius: 0 Tangent equation line: x = 21 passing through (21, 0)
area equals pi r squared therefor r squared equals area over pi. Now find square root of r squared and you have "R" (radius) = 2.821
This is not possible, since the point (4,6) lies inside the circle : X2 + Y2 = 16 Tangents to a circle or ellipse never pass through the circle
(2, -2)
Circle equation: x^2 +y^2 -8x +4y = 30 Tangent line equation: y = x+4 Centre of circle: (4, -2) Slope of radius: -1 Radius equation: y--2 = -1(x-4) => y = -x+2 Note that this proves that tangent of a circle is always at right angles to its radius
Circle equation: x^2 +y^2 -8x -16y -209 = 0 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius of circle 17 Slope of radius: 0 Perpendicular tangent slope: 0 Tangent point of contact: (21, 8) Tangent equation: x = 21 passing through (21, 0)
Equation of circle: x^2 +y^2 -8x -y +5 = 0Completing the squares: (x-4)^2 +(y-0.5)^2 = 11.25Centre of circle: (4, 0.5)Slope of radius: -1/2Slope of tangent: 2Equation of tangent: y-2 = 2(x-1) => y = 2xNote that the above proves the tangent of a circle is always at right angles to its radius
k = 0.1
In trig, the secant squared divided by the tangent equals the hypotenuse squared divided by the product of the opposite and adjacent sides of the triangle.Details: secant = hypotenuse/adjacent (H/A) and tangent = opposite/adjacent (A/O);Then secant2/tangent = (H2/A2)/(O/A) = H2/A2 x A/O = H2/AO.
Circle equation: x^2 +y^2 -8x -16y -209 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius: 17 Slope of radius: 0 Tangent equation line: x = 21 passing through (21, 0)
area equals pi r squared therefor r squared equals area over pi. Now find square root of r squared and you have "R" (radius) = 2.821
Pi (3.14) times the radius of a circle squared, equals the circumference of a circle.
It is (-0.3, 0.1)
Area of a circle equals pi (3.14) times the radius squared.