Best Answer

Using Pythagoras' theorem and the quadratic equation formula they work out as 9.9 cm and 13.2 cm in lengths.

Check: 9,9+13.2+16.5 = 39.6 cm which is its perimeter

Q: What are the side lengths of a right angle triangle with an hypotenuse of 16.5 cm and a perimeter of 39.6 cm?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

It depends on what you mean by "measure": perimeter or area, or lengths of medians perhaps, or angle bisectors.

The three basic ratios are sine, cosine and tangent.In a right angled triangle,the sine of an angle is the ratio of the lengths of the side opposite the angle and the hypotenuse;the cosine of an angle is the ratio of the lengths of the side adjacent to the angle and the hypotenuse;the tangent of an angle is the ratio of the lengths of the side opposite the angle and the the side adjacent to the angle.

Providing that it is a right angle triangle then use Pythagoras; theorem:- a2+b2 = c2 where a and b are the lengths of the sides and c is the hypotenuse

The easiest way is if you already have the lengths of all three sides of the triangle. In which case, you simply add their lengths together to acquire the perimeter. However, if you only have the lengths of two sides of a triangle, and it's a right triangle"; you can use the Pythagorean Theorem to determine the length of the third side. Note: Here are some quick definitions of terms that will be used in the following equations. A² will represent the height of the triangle. B² will represent the width of the triangle. C² will represent the hypotenuse of the triangle. The "Hypotenuse" is the longest side of a triangle. A "Right Triangle" is a triangle that has an angle measuring 90°. When using the Pythagorean Theorem; if you're attempting to find hypotenuse of a triangle; you use the formula "A² + B² = C²". That is; you square the two known sides; then add the products. Upon doing that, find the square root of the sum of both numbers, and you have the length of the hypotenuse. Upon finding the missing side's length; add the lengths of all three sides, and the resulting number will be the perimeter of the triangle. If you have the length of one side, and the hypotenuse of a right triangle; and are seeking to find the third side's length; you use the formula "C² - A² = B²" or "C² - B² = A²"; depending on which side your attempting to find the length of. Like in the previous equation, add the lengths of all three sides together to acquire the perimeter.

The sine function is used in trigonometric calculations when attempting to find missing side lengths of a right triangle. The sine of an angle in a triangle is equal to the length of the side opposite of that angle divided by the length of the hypotenuse of the triangle. Using this fact you can calculate the length of the hypotenuse if you know an angle measure and the length of one leg of the triangle. You can also calculate the length of a leg of the triangle if you know an angle measure and the length of the hypotenuse.

Related questions

It depends on what you mean by "measure": perimeter or area, or lengths of medians perhaps, or angle bisectors.

In a right angle triangle if the lengths of the adjacent or the hypotenuse are known.

To find the side lengths and hypotenuse of a right angle triangle.

The only triangle that has a hypotenuse is a right-triangle. The hypotenuse is the side opposite the right angle, so the angle is always 90 degrees. In this case, if you're just finding the angle then you don't need to know what the side lengths are.

The sine of an angle in a right triangle is the ratio of the length of the side opposite the angle to the length of the hypotenuse.In terms of ratios, the sine of an angle is defined, in a right angled triangle, as the ratio of lengths of the opposite side to the hypotenuse.

If it has an hypotenuse then it must be a right angle triangle then by using Pythagoras' theorem its hypotenuse is 2.86 cm rounded and by using trigonometry its smallest angle is 35.02 degrees rounded.

The three basic ratios are sine, cosine and tangent.In a right angled triangle,the sine of an angle is the ratio of the lengths of the side opposite the angle and the hypotenuse;the cosine of an angle is the ratio of the lengths of the side adjacent to the angle and the hypotenuse;the tangent of an angle is the ratio of the lengths of the side opposite the angle and the the side adjacent to the angle.

Providing that it is a right angle triangle then use Pythagoras; theorem:- a2+b2 = c2 where a and b are the lengths of the sides and c is the hypotenuse

The height of a triangle alone is not enough information to find the perimeter. You need some angle measures or side lengths.

The easiest way is if you already have the lengths of all three sides of the triangle. In which case, you simply add their lengths together to acquire the perimeter. However, if you only have the lengths of two sides of a triangle, and it's a right triangle"; you can use the Pythagorean Theorem to determine the length of the third side. Note: Here are some quick definitions of terms that will be used in the following equations. A² will represent the height of the triangle. B² will represent the width of the triangle. C² will represent the hypotenuse of the triangle. The "Hypotenuse" is the longest side of a triangle. A "Right Triangle" is a triangle that has an angle measuring 90°. When using the Pythagorean Theorem; if you're attempting to find hypotenuse of a triangle; you use the formula "A² + B² = C²". That is; you square the two known sides; then add the products. Upon doing that, find the square root of the sum of both numbers, and you have the length of the hypotenuse. Upon finding the missing side's length; add the lengths of all three sides, and the resulting number will be the perimeter of the triangle. If you have the length of one side, and the hypotenuse of a right triangle; and are seeking to find the third side's length; you use the formula "C² - A² = B²" or "C² - B² = A²"; depending on which side your attempting to find the length of. Like in the previous equation, add the lengths of all three sides together to acquire the perimeter.

A hypotenuse is the longest side of a right angled triangle. The length of a hypotenuse can be found using the Pythagorean Theorem. This states that in a right angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides. This means that to find the length of the hypotenuse, you need to know the lengths of the other two sides.

The sine function is used in trigonometric calculations when attempting to find missing side lengths of a right triangle. The sine of an angle in a triangle is equal to the length of the side opposite of that angle divided by the length of the hypotenuse of the triangle. Using this fact you can calculate the length of the hypotenuse if you know an angle measure and the length of one leg of the triangle. You can also calculate the length of a leg of the triangle if you know an angle measure and the length of the hypotenuse.