Help
Yes, both have cardinality 0.
No, only if both sets are empty. The intersection of disjoint sets is always empty.
empty set or null set is a set with no element.
Not necessarily. The odd integers and the even integers are two infinitely large sets. But their intersection is the null (empty) set.
Help
Yes, both have cardinality 0.
No, only if both sets are empty. The intersection of disjoint sets is always empty.
There is no such symbol for joint sets. Actually, there is a representation for joint sets. That is: The sets are joint if A ∩ B is not empty. The sets are disjoint if A ∩ B is empty.
I presume you mean intersecting. Two sets are intersecting if they have members in common. The set of members common to two (or more) sets is called the intersection of those sets. If two sets have no members in common, their intersection is the empty set. In this case the sets are called disjoint.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
empty set or null set is a set with no element.
Not necessarily. The odd integers and the even integers are two infinitely large sets. But their intersection is the null (empty) set.
The concept of closure: If A and B are sets the intersection of sets is a set. Then if the intersection of two sets is a set and that set could be empty but still a set. The same for union, a set A union set Null is a set by closure,and is the set A.
The terms are usually used to describe sets that contain no elements or empty sets.
An empty set becomes an empty set by virtue of its definition which states that it is a set that contains no elements. In other words, it contains nothing, it is empty!
Disjoint sets are sets whose intersection is the empty set. That is, they have no elements in common. Examples: {Odd integers} and {Multiples of 6}. {People living in my street} and {Objects made of glass}.