answersLogoWhite

0


Best Answer

The values of the variables which make the polynomial equal to zero

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the zeros of polynomials?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Is it always true that the zeros of the derivative and the zeros of the polynomial always alternate in location along the horizontal axis?

A zero of the derivative will always appear between two zeroes of the polynomial. However, they do not always alternate. Sometimes two or more zeroes of the derivative will occur between two zeroes of a polynomial. This is often seen with quartic or quintic polynomials (polynomials with the highest exponent of 4th or 5th power).


What has the author David Leon Netzorg written?

David Leon Netzorg has written: 'Mechanical quadrature formulas and the distribution of zeros of orthogonal polynomials' -- subject(s): Orthogonal Functions


Polynomials have factors that are?

Other polynomials of the same, or lower, order.


How polynomials and non polynomials are alike?

they have variable


What are polynomials that have factors called?

Reducible polynomials.


Write the polynomials with the zeros -3 -5 2?

(x - (-3)) (x - (-5)) (x - 2), or(x + 3) (x + 5) (x - 2)You can multiply the binomials to get a polynomial of degree 3.


What has the author P K Suetin written?

P. K. Suetin has written: 'Polynomials orthogonal over a region and Bieberbach polynomials' -- subject(s): Orthogonal polynomials 'Series of Faber polynomials' -- subject(s): Polynomials, Series


What is a jocobi polynomial?

In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials.


What is the process to solve multiplying polynomials?

what is the prosses to multiply polynomials


Where did René Descartes invent polynomials?

Descartes did not invent polynomials.


How alike the polynomials and non polynomials?

how alike the polynomial and non polynomial


What has the author Richard Askey written?

Richard Askey has written: 'Three notes on orthogonal polynomials' -- subject(s): Orthogonal polynomials 'Recurrence relations, continued fractions, and orthogonal polynomials' -- subject(s): Continued fractions, Distribution (Probability theory), Orthogonal polynomials 'Orthogonal polynomials and special functions' -- subject(s): Orthogonal polynomials, Special Functions