There are none because there is no such thing as a Greatest Common Multiple (GCM).
If {a, b, c, ... x} is any set of integers, then a*b*c*...*x is a common multiple. Then twice that number is also a common multiple and is greater. And then, twice THAT number is a common multiple and greater still. It is easy to show that this process can go on for ever and so there is no such thing as a GCM.
Problems of morality. Premarital sex of teens would be solved that way then.
Alot of problems were solved through the use of trig. To many to count in fact. The Sears tower would be an example I can think of. But good question.
It is algebra.
Using division or multiplication or addition??
By using mathematics
Reducing equivalent fractions to their simplest form.
Problems involving the addition and subtraction of unlike fractions.
public transportation strike
well the problem that is solved is to be able to contact people but using the phone to much close to your head it can cause brain tumors
Reducing fractions
Problems of morality. Premarital sex of teens would be solved that way then.
Alot of problems were solved through the use of trig. To many to count in fact. The Sears tower would be an example I can think of. But good question.
For reducing fractions to their lowest terms
they solved their promblems by thinking about it and testing.
Multiplication problems can be solved by consulting a multiplication table. Large numbers can be multiplied using a technique called Long Multiplication. One can also use an electronic calculator.
Adding and subtracting unlike fractions.
Some problems can be, others cannot.