When you plot a function with asymptotes, you know that the graph cannot cross the asymptotes, because the function cannot be valid at the asymptote. (Since that is the point of having an asymptotes - it is a "disconnect" where the function is not valid - e.g when dividing by zero or something equally strange would occur). So if you graph is crossing an asymptote at any point, something's gone wrong.
If you are looking at a graph and you want to know if a function is continuous, ask yourself this simple question: Can I trace the graph without lifting my pencil? If the answer is yes, then the function is continuous. That is, there should be no "jumps", "holes", or "asymptotes".
The tangent function will generate a calculator "math error" if the angle in questin is ±90 degrees. For these angles, the tangent function is not defined.
Tangent line is a graph. This graph is to gather data.
The answer will depend on the context. If the curve in question is a differentiable function then the gradient of the tangent is given by the derivative of the function. The gradient of the tangent at a given point can be evaluated by substituting the coordinate of the point and the equation of the tangent, though that point, is then given by the point-slope equation.
A tangent function is a trigonometric function that describes the ratio of the side opposite a given angle in a right triangle to the side adjacent to that angle. In other words, it describes the slope of a line tangent to a point on a unit circle. The graph of a tangent function is a periodic wave that oscillates between positive and negative values. To sketch a tangent function, we can start by plotting points on a coordinate plane. The x-axis represents the angle in radians, and the y-axis represents the value of the tangent function. The period of the function is 2π radians, so we can plot points every 2π units on the x-axis. The graph of the tangent function is asymptotic to the x-axis. It oscillates between positive and negative values, crossing the x-axis at π/2 and 3π/2 radians. The graph reaches its maximum value of 1 at π/4 and 7π/4 radians, and its minimum value of -1 at 3π/4 and 5π/4 radians. In summary, the graph of the tangent function is a wave that oscillates between positive and negative values, crossing the x-axis at π/2 and 3π/2 radians, with a period of 2π radians.
2
When you plot a function with asymptotes, you know that the graph cannot cross the asymptotes, because the function cannot be valid at the asymptote. (Since that is the point of having an asymptotes - it is a "disconnect" where the function is not valid - e.g when dividing by zero or something equally strange would occur). So if you graph is crossing an asymptote at any point, something's gone wrong.
The graph of the tangent function is periodic at every point. Periodic means that the value of the function at every point is repeated after an integer multiple of the period.
The tan [tangent] function.When a function has two or more brakes, this is not a continuous function, but it can be a continuous function in some intervals such as the tangent does.
Use the four-step process to find the slope of the tangent line to the graph of the given function at any point.
If you are looking at a graph and you want to know if a function is continuous, ask yourself this simple question: Can I trace the graph without lifting my pencil? If the answer is yes, then the function is continuous. That is, there should be no "jumps", "holes", or "asymptotes".
If the graph of the function is a continuous line then the function is differentiable. Also if the graph suddenly make a deviation at any point then the function is not differentiable at that point . The slope of a tangent at any point of the graph gives the derivative of the function at that point.
The tangent function will generate a calculator "math error" if the angle in questin is ±90 degrees. For these angles, the tangent function is not defined.
that's simple an equation is settled of asymptotes so if you know the asymptotes... etc etc Need more help? write it
Tangent line is a graph. This graph is to gather data.
A graph represents a function if and only if every input generates a single output.