answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: What do we mean by a linear regression model?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the difference between the logistic regression and regular regression?

in general regression model the dependent variable is continuous and independent variable is discrete type. in genral regression model the variables are linearly related. in logistic regression model the response varaible must be categorical type. the relation ship between the response and explonatory variables is non-linear.


What is Full Regression?

Regression :The average Linear or Non linear relationship between Variables.


What are some of the advantages and disadvantages of making forecasts using regression methods?

+ Linear regression is a simple statistical process and so is easy to carry out. + Some non-linear relationships can be converted to linear relationships using simple transformations. - The error structure may not be suitable for regression (independent, identically distributed). - The regression model used may not be appropriate or an important variable may have been omitted. - The residual error may be too large.


What can you conclude if the global test of regression does not reject the null hypothesis?

You can conclude that there is not enough evidence to reject the null hypothesis. Or that your model was incorrectly specified. Consider the exact equation y = x2. A regression of y against x (for -a < x < a) will give a regression coefficient of 0. Not because there is no relationship between y and x but because the relationship is not linear: the model is wrong! Do a regression of y against x2 and you will get a perfect regression!


Given a linear regression equation of equals 20 - 1.5x where will the point 3 15.5 fall with respect to the regression line?

on the lineGiven a linear regression equation of = 20 - 1.5x, where will the point (3, 15) fall with respect to the regression line?Below the line