The answer is 4! (4 factorial), the same as 4x3x2x1, which equals 24 combinations. The answer is 24 and this is how: A b c d A b d c A c d b A c b d A d c b A d b c B c d a B c a d B d a c B d c a B a c d B a d c C d a b C d b a C a b d C a d b C b d a C b a d D a b c D a c b D b c a D b a c D c a b D c b a
This is a proof that uses the cosine rule and Pythagoras' theorem. As on any triangle with c being the opposite side of θ and a and b are the other sides: c^2=a^2+b^2-2abcosθ We can rearrange this for θ: θ=arccos[(a^2+b^2-c^2)/(2ab)] On a right-angle triangle cosθ=a/h. We can therefore construct a right-angle triangle with θ being one of the angles, the adjacent side being a^2+b^2-c^2 and the hypotenuse being 2ab. As the formula for the area of a triangle is also absinθ/2, when a and b being two sides and θ the angle between them, the opposite side of θ on the right-angle triangle we have constructed is 4A, with A being the area of the original triangle, as it is 2absinθ. Therefore, according to Pythagoras' theorem: (2ab)^2=(a^2+b^2-c^2)^2+(4A)^2 4a^2*b^2=(a^2+b^2-c^2)^2+16A^2 16A^2=4a^2*b^2-(a^2+b^2-c^2)^2 This is where it will start to get messy: 16A^2=4a^2*b^2-(a^2+b^2-c^2)(a^2+b^2-c^2) =4a^2*b^2-(a^4+a^2*b^2-a^2*c^2+a^2*b^2+b^4-b^2*c^2- a^2*c^2-b^2*c^2+c^4) =4a^2*b^2-(a^4+2a^2*b^2-2a^2*c^2+b^4-2b^2*c^2+c^4) =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.1) We will now see: (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =(-a^2+ab+ac-ab+b^2+bc-ac+bc+c^2)(a^2+ab-ac-ab-b^2+bc+ac+bc-c^2) =(-a^2+b^2+2bc+c^2)(a^2-b^2+2bc-c^2) =-a^4+a^2*b^2-2a^2*bc+a^2*c^2+a^2*b^2-b^4+2b^3*c-b^2*c^2+2a^2*bc-2b^3*c+(2bc)^2-2bc^3+a^2*c^2-b^2*c^2+2bc^3-c^4 =-a^4+2a^2*b^2+2a^2*c^2-b^4+(2bc)^2-c^4-2b^2*c^2 =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.2) And now that we know that Eq.1=Eq.2, we can make Eq.1=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) Therefore: 16A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)/16 =[(a+b+c)/2][(-a+b+c)/2][(a-b+c)/2][(a+b-c)/2] And so if we let s=(a+b+c)/2 A^2=s(s-a)(s-b)(s-c)
Your example is confusing -- while 2^4 = 4^2, in general it is false that x^y=y^x, so not sure what you mean by "converting powers." A relevant rule is that (a^b)^c = a^(bc) (power of a power is product of powers) If a=2, b=2, and c=2 then a^b = 2-squared = 4 and the formula gives 4^2 = 2^(2*2) which is true. Also (a^b)*(a^c) = a^(b+c) (multiply numbers, add powers) and (a^b)/(a^c) = a^(b-c) (divide numbers, subtract powers)
b divided by 2
The distributive property states that a × (b + c) = a × b + a × c
What is 4 C B
This deals with ratios and proportions. β± ββββββ β― ββββββ β° A : B = 2 : 3 B : C = 4 : 5. Now, to find A : B : C, we need to make the value of B equal in A : B ratio and B : C ratio. Here, Value of B in A : B ratio is 3; and B : C ratio is 4. LCM of 3 and 4 is 12. Therefore, we multiply 4 to the first ratio and 3 to the second ratio. A : B = 2 Γ 4 : 3 Γ 4 A : B = 8 : 12 Also, B : C = 4 Γ 3 : 5 Γ 3 B : C = 12 : 15 Now, we can combine A : B and B : C. A : B : C = 8 : 12 : 15.
mean or average = (a + b + c) / 3 = 10 so a + b + c = 10 * 3, so a + b + c = 30, so take your pick, 2 + 10 + 18, 11 + 4 + 15 etc
It means a*b = c
It equals to a low B 4 = A 3 = B 2 = C 1 = D 0 = F
Assuming the 10 = Cup A, 4 = Cup B and 3 = Cup C 1) Fill Cup C (A=0, B=0, C=3) 2) Pour Cup C into Cup A (A=3, B=0, C=0) 3) Fill Cup B (A=3, B=4, C=0) 4) Fill Cup C from Cup A (A=3, B=1, C=3) 5) Pour the remainder of Cup B into Cup A (A=4, B=0, C=3) 6) Empty Cup C (A=4, B=0, C=0) 7) Fill Cup B (A=4, B=4, C=0) 8) Fill Cup C from Cup A (A=4, B=1, C=3) 9) Pour the remainder of Cup B into Cup A (A=5, B=0, C=3) 10) Empty Cup C (A=5, B=0, C=0) 11) Fill Cup B (A=5, B=4, C=0) 12) Fill Cup C from Cup A (A=5, B=1, C=3) 13) Empty Cup C (A=5, B=1, C=0) 13) Pour the remainder of Cup B into Cup C (A=5, B=0, C=1) 14) Fill Cup B (A=5, B=4, C=1) so assuming you count the filling of cups as pours your answer is 14
Oh, and I mean A+B+C=BB
The answer is 4! (4 factorial), the same as 4x3x2x1, which equals 24 combinations. The answer is 24 and this is how: A b c d A b d c A c d b A c b d A d c b A d b c B c d a B c a d B d a c B d c a B a c d B a d c C d a b C d b a C a b d C a d b C b d a C b a d D a b c D a c b D b c a D b a c D c a b D c b a
This is a proof that uses the cosine rule and Pythagoras' theorem. As on any triangle with c being the opposite side of θ and a and b are the other sides: c^2=a^2+b^2-2abcosθ We can rearrange this for θ: θ=arccos[(a^2+b^2-c^2)/(2ab)] On a right-angle triangle cosθ=a/h. We can therefore construct a right-angle triangle with θ being one of the angles, the adjacent side being a^2+b^2-c^2 and the hypotenuse being 2ab. As the formula for the area of a triangle is also absinθ/2, when a and b being two sides and θ the angle between them, the opposite side of θ on the right-angle triangle we have constructed is 4A, with A being the area of the original triangle, as it is 2absinθ. Therefore, according to Pythagoras' theorem: (2ab)^2=(a^2+b^2-c^2)^2+(4A)^2 4a^2*b^2=(a^2+b^2-c^2)^2+16A^2 16A^2=4a^2*b^2-(a^2+b^2-c^2)^2 This is where it will start to get messy: 16A^2=4a^2*b^2-(a^2+b^2-c^2)(a^2+b^2-c^2) =4a^2*b^2-(a^4+a^2*b^2-a^2*c^2+a^2*b^2+b^4-b^2*c^2- a^2*c^2-b^2*c^2+c^4) =4a^2*b^2-(a^4+2a^2*b^2-2a^2*c^2+b^4-2b^2*c^2+c^4) =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.1) We will now see: (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =(-a^2+ab+ac-ab+b^2+bc-ac+bc+c^2)(a^2+ab-ac-ab-b^2+bc+ac+bc-c^2) =(-a^2+b^2+2bc+c^2)(a^2-b^2+2bc-c^2) =-a^4+a^2*b^2-2a^2*bc+a^2*c^2+a^2*b^2-b^4+2b^3*c-b^2*c^2+2a^2*bc-2b^3*c+(2bc)^2-2bc^3+a^2*c^2-b^2*c^2+2bc^3-c^4 =-a^4+2a^2*b^2+2a^2*c^2-b^4+(2bc)^2-c^4-2b^2*c^2 =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.2) And now that we know that Eq.1=Eq.2, we can make Eq.1=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) Therefore: 16A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)/16 =[(a+b+c)/2][(-a+b+c)/2][(a-b+c)/2][(a+b-c)/2] And so if we let s=(a+b+c)/2 A^2=s(s-a)(s-b)(s-c)
Well, isn't that just a happy little math problem! If A is less than B and B plus C equals 10, then it must be true that A plus C is less than 10. Just remember, in the world of numbers, everything adds up beautifully in the end.
here's the notes for i gotta feeling on the recorder by the black eyed peas: d' d' d' d' c' c' bb c'c'c'c' c'c'c'c' b b b b b b b b a ( 4 beats) g ( 4 beats) a ( 4 beats) g ( 4 beats) c' a ( 4 beats) g ( 4 beats) a ( 4 beats) g ( 4 beats) E A G C' B..........E E C' B A G E C' B ......... E E C' B A G E D' B E E D' B A G E D' D' B A G ... C' B E E C' B A G E C' B ......... E E C' B A G E D' B E E D' B A G E D' D' B A G ... C' B E E C' B A G E C' B ......... E E C' B A G E D' B E E D' B A G E D' D' B A G ... C' B E E C' B A G E C' B ......... E E C' B A G E D' B E E D' B A G E D' D' B A G ... C' B A...G. Thats the begining thnks ;)
4 dots, or A C A B which mean all cops are bastards